login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188193
G.f. satisfies: A(x) = Sum_{n>=0} log(1 + 2^n*x*A(x))^n/n!.
1
1, 2, 10, 100, 2500, 224728, 77611032, 95603336016, 411188458873152, 6215509773143124736, 334390128406134844422816, 64839530694681966290325813952, 45813418110052719651124682371286592
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} C(2^n,n)*x^n*A(x)^n,
(2) A(x) = (1/x)*Series_Reversion(x/B(x)),
(3) A(x) = B(x*A(x)) and B(x) = A(x/B(x)),
where B(x) = Sum_{n>=0} C(2^n,n)*x^n is the g.f. of A014070.
(4) A(x) = G(x/A(x)) and G(x) = A(x*G(x)), where G(x) is the g.f. of A188194.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 100*x^3 + 2500*x^4 + 224728*x^5 +...
which equals the series:
A(x) = 1 + log(1+2*x*A(x)) + log(1+4*x*A(x))^2/2! + log(1+8*x*A(x))^3/3! +...
Let B(x) equal the g.f. of A014070, which begins:
B(x) = 1 + 2*x + 6*x^2 + 56*x^3 + 1820*x^4 +...+ C(2^n,n)*x^n +...
then B(x) = A(x/B(x)) and A(x) = B(x*A(x)), so that:
A(x) = 1 + 2*x*A(x) + 6*x^2*A(x)^2 + 56*x^3*A(x)^3 + 1820*x^4*A(x)^4 +...+ C(2^n,n)*x^n*A(x)^n +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, log(1+2^m*x*A+x*O(x^n))^m/m!)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A063959 A101686 A324241 * A228120 A377919 A074109
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 23 2011
STATUS
approved