login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188002
T(n,k)=Number of nondecreasing arrangements of n numbers x(i) in -(n+k-2)..(n+k-2) with the sum of sign(x(i))*x(i)^2 zero
16
1, 1, 2, 1, 3, 3, 1, 4, 4, 12, 1, 5, 5, 17, 25, 1, 6, 8, 25, 45, 106, 1, 7, 9, 34, 64, 176, 376, 1, 8, 10, 46, 88, 286, 644, 1670, 1, 9, 11, 57, 117, 421, 1055, 2983, 7315, 1, 10, 12, 75, 159, 636, 1696, 5191, 13675, 35808, 1, 11, 15, 88, 216, 862, 2596, 8373, 24135, 67487, 176971
OFFSET
1,3
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..434 augmenting an earlier file of 188 elements by R. H. Hardin
EXAMPLE
Table starts
.....1.....1......1......1......1......1......1.......1.......1.......1......1
.....2.....3......4......5......6......7......8.......9......10......11.....12
.....3.....4......5......8......9.....10.....11......12......15......16.....17
....12....17.....25.....34.....46.....57.....75......88.....108.....125....147
....25....45.....64.....88....117....159....216.....270.....333.....421....500
...106...176....286....421....636....862...1206....1587....2114....2698...3450
...376...644...1055...1696...2596...3796...5443....7674...10392...14198..18641
..1670..2983...5191...8373..13343..20224..30358...43750...62354...86173.118859
..7315.13675..24135..40681..66452.105208.160866..242128..354103..510107.717077
.35808.67487.122238.211234.354806.573982.907542.1393159.2104002.3099873
Some solutions for n=5 k=3
.-4...-6...-5....0...-4...-1...-5...-3...-5...-5...-6...-6...-6...-4...-1...-4
.-2...-5...-5....0...-1....0...-2...-2....1....0....0...-6....3....2...-1...-1
.-2....3....3....0....2....0....2...-2....2....0....0....0....3....2...-1...-1
.-1....4....4....0....2....0....3....1....2....0....0....6....3....2...-1....3
..5....6....5....0....3....1....4....4....4....5....6....6....3....2....2....3
MAPLE
A188002rec := proc(n, nminusfE, E)
option remember ;
local a, fEminus, fEplus, f0 ;
if E = 0 then
if n = 0 then
1;
else
0;
end if;
else
a :=0 ;
for fEminus from 0 to nminusfE do
for fEplus from 0 to nminusfE-fEminus do
f0 := nminusfE-fEminus-fEplus ;
a := a+procname(n-E^2*fEminus+E^2*fEplus, f0, E-1) ;
end do:
end do:
a ;
end if;
end proc:
A188002 := proc(n, k)
A188002rec(0, n, n+k-2) ;
end proc:
seq(seq( A188002(n, d-n), n=1..d-1), d=2..10) ; # R. J. Mathar, May 09 2023
MATHEMATICA
f[n_, nminusfE_, E_] := f[n, nminusfE, E] = Module[{a, fEminus , fEplus, f0}, If[E == 0, If[n == 0, 1, 0], a = 0; For[fEminus = 0, fEminus <= nminusfE, fEminus++, For[fEplus = 0, fEplus <= nminusfE - fEminus, fEplus++, f0 = nminusfE - fEminus - fEplus; a = a + f[n - E^2*fEminus + E^2*fEplus, f0, E - 1]]]; a]];
T[n_, k_] := T[n, k] = f[0, n, n + k - 2];
Table[Table[ T[n, d - n], {n, 1, d - 1}], {d, 2, 12}] // Flatten (* Jean-François Alcover, Aug 21 2023, after R. J. Mathar *)
PROG
(PARI) A188002(n, k) = my(s, X, Y, p, pi, pj); s = (n+k-2)^2*n\2; Y = 'y + O('y^(s+1)); X = 'x + O('x^(n+1)); p = prod(i=1, n+k-2, 1/(1-X*Y^(i^2))); sum(i=0, n, pi=polcoef(p, i); sum(j=i, n-i, pj=polcoef(p, j); sum(d=0, s, polcoef(pi, d)*polcoef(pj, d)) * (2-(i==j)) )); \\ Max Alekseyev, Sep 18 2023
CROSSREFS
Cf. A188003 (n=3), A188004 (n=4), A188005 (n=5), A188006 (n=6), A188007 (n=7), A188008 (n=8), A187994 (k=1), A187993 (k=n), A187995 (k=2), A187996 (k=3), A187997 (k=4), A187998 (k=5), A187999 (k=6), A188000 (k=7), A188001 (k=8).
Sequence in context: A211701 A183110 A117895 * A186974 A286312 A278492
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 18 2011
STATUS
approved