login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187946
[nr+kr]-[nr]-[kr], where r=(1+sqrt(5))/2, k=5, [ ]=floor.
4
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
See A187950.
FORMULA
a(n)=[nr+5r]-[nr]-[5r], where r=(1+sqrt(5))/2.
MATHEMATICA
r=(1+5^(1/2))/2;
seqA=Table[Floor[(n+5)r]-Floor[n*r]-8, {n, 1, 220}] (* A187946 *)
Flatten[Position[seqA, 0] ] (* A187947 *)
Flatten[Position[seqA, 1] ] (* A134862 *)
PROG
(Python)
from __future__ import division
from gmpy2 import isqrt
def A187946(n):
return int((isqrt(5*(n+5)**2)+n+1)//2 -(isqrt(5*n**2)+n)//2 - 6) # Chai Wah Wu, Oct 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 16 2011
STATUS
approved