|
|
A187853
|
|
Number of 5-step king-knight's tours (piece capable of both kinds of moves) on an n X n board summed over all starting positions.
|
|
1
|
|
|
0, 0, 5328, 49776, 177040, 408048, 744696, 1183632, 1723120, 2362864, 3102864, 3943120, 4883632, 5924400, 7065424, 8306704, 9648240, 11090032, 12632080, 14274384, 16016944, 17859760, 19802832, 21846160, 23989744, 26233584, 28577680
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 50128*n^2 - 312688*n + 476944 for n>7.
G.f.: 8*x^3*(666 + 4224*x + 5462*x^2 + 2616*x^3 + 237*x^4 - 419*x^5 - 217*x^6 - 37*x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>10.
(End)
|
|
EXAMPLE
|
Some solutions for 4 X 4:
..0..5..0..0....4..1..0..0....2..0..0..0....0..0..0..0....0..5..0..0
..0..0..1..2....0..3..2..0....1..0..0..0....0..0..2..0....0..0..0..3
..0..0..4..3....0..5..0..0....0..3..0..0....0..3..5..1....0..0..4..2
..0..0..0..0....0..0..0..0....4..5..0..0....4..0..0..0....0..1..0..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|