login
A187852
Number of 4-step king-knight's tours (piece capable of both kinds of moves) on an n X n board summed over all starting positions.
1
0, 24, 1400, 7620, 20952, 41652, 69456, 104268, 146088, 194916, 250752, 313596, 383448, 460308, 544176, 635052, 732936, 837828, 949728, 1068636, 1194552, 1327476, 1467408, 1614348, 1768296, 1929252, 2097216, 2272188, 2454168, 2643156
OFFSET
1,2
COMMENTS
Row 4 of A187850.
LINKS
FORMULA
Empirical: a(n) = 3504*n^2 - 17748*n + 21996 for n>5.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: 4*x^2*(6 + 332*x + 873*x^2 + 567*x^3 + 64*x^4 - 66*x^5 - 24*x^6) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)
EXAMPLE
Some solutions for 4 X 4:
..0..0..0..0....0..0..2..0....0..0..0..0....0..2..3..0....0..4..0..0
..0..0..0..1....0..0..1..0....0..0..2..0....0..0..4..0....1..0..0..0
..0..3..2..0....0..0..0..3....3..0..0..1....1..0..0..0....0..0..3..0
..0..0..0..4....0..4..0..0....4..0..0..0....0..0..0..0....0..2..0..0
CROSSREFS
Cf. A187850.
Sequence in context: A160310 A269271 A347857 * A276595 A348700 A010797
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 14 2011
STATUS
approved