Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Mar 29 2023 08:59:26
%S 5,17,73,257,757,65537,262657,1772893,4432676798593,48551233240513,
%T 378890487846991,3156404483062657,17390284913300671,
%U 280343912759041771,319913861581383373,487014306953858713,5559917315850179173,7824668707707203971,8443914727229480773,32564717507686012813
%N Primes of the form (p^x - 1)/(p^y - 1), where p is prime, y > 1, and y is the largest proper divisor of x.
%C Complement of A023195 relative to A003424.
%C Only eight primes of this form don't exceed 1.275*10^10 (see Bateman and Stemmler):
%C (1) three of the form (p^9 - 1)/(p^3 - 1): 73 (p=2), 757 (p=3), 1772893 (p=11);
%C (2) four of the form (2^x - 1)/(2^y - 1) with x = 2y: 5 (x=4), 17 (x=8), 257 (x=16), 65537 (x=32); and
%C (3) the prime 262657 = (2^27 - 1)/(2^9 - 1).
%C Some of these prime numbers are not Brazilian, these are Fermat primes > 3: 5, 17, 257, 65537, so they are in A220627.
%C The other primes are Brazilian so they are in A085104, example: (p^9 - 1)/(p^3 - 1) = 111_{p^3} with 73 = 111_8, 757 = 111_27, 1772893 = 111_1331, also 262657 = 111_512 [See section V.4 of Quadrature article in Links] (comment improved in Mar 03 2023).
%C Comments from _Don Reble_, Jul 28 2022 (Start)
%C This is an easy sequence that looks hard.
%C Note that x must be a power of a prime; otherwise (p^x-1)/(p^y-1) has too many cyclotomic factors.
%C Almost all values are (p^9-1)/(p^3-1). The exceptions below 10^45
%C are the Fermat primes 5, 17, 257, 65537 and also
%C 262657, 4432676798593, 5559917315850179173,
%C 227376585863531112677002031251,
%C 467056170954468301850494793701001,
%C 36241275390490156321975496980895092369525753,
%C 284661951906193731091845096405947222295673201 (see examples).
%C (End)
%H Don Reble, <a href="/A187823/b187823.txt">Table of n, a(n) for n = 1..50000</a>
%H Paul T. Bateman and Rosemarie M. Stemmler, <a href="https://doi.org/10.1215/ijm/1255631815">Waring's problem for algebraic number fields and primes of the form (p^r-1)/(p^d-1)</a>, Illinois J. Math. 6 (1962), pp. 142-156.
%H Bernard Schott, <a href="/A125134/a125134.pdf">Les nombres brésiliens</a>, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
%H <a href="/index/Br#Brazilian_numbers">Index entries for sequences related to Brazilian numbers</a>.
%e 5 = (2^4 - 1)/(2^2 - 1)= 11_{2^2} = 11_4.
%e 17 = (2^8 - 1)/(2^4 - 1) = 11_{2^4} = 11_16.
%e 257 = (2^16 - 1)/(2^8 - 1) = 11_{2^8} = 11_256.
%e 757 = (3^9 - 1)/(3^3 - 1) = 111_{3^3} = 111_27.
%e 262657 = (2^27 - 1)/(2^9 - 1) = 111_{2^9} = 111_512.
%e 655357 = (2^32 - 1)/(2^16 - 1) = 11_{2^16} = 11_655356.
%e 4432676798593 = (2^49 - 1)/(2^7 - 1) = 1111111_{2^7} = 1111111_128.
%e 5559917315850179173 = (11^27 - 1)/(11^9 - 1) = 111_{11^3} = 111_1331.
%e 227376585863531112677002031251 = (5^49 - 1)/(5^7 - 1) = 1111111_{5^7}.
%e 467056170954468301850494793701001 = (43^25 - 1)/(43^5 - 1) = 11111_{43^5}.
%e 36241275390490156321975496980895092369525753 = (263^27 - 1)/(263^9 - 1).
%e 284661951906193731091845096405947222295673201 = (167^25 - 1)/(167^5 - 1).
%Y Equals A003424 \ A023195.
%Y Cf. A085104, A220627.
%K nonn
%O 1,1
%A _Bernard Schott_, Dec 27 2012
%E a(9)-a(16) from _Don Reble_, Jul 28 2022
%E a(17)-a(20) from _Don Reble_, Mar 21 2023