Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Mar 13 2015 22:54:08
%S 1,2,1,4,2,1,1,8,4,2,2,1,1,1,1,16,8,4,4,2,2,2,2,1,1,1,1,1,1,1,1,32,16,
%T 8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,64,32,16,
%U 16,8,8,8,8,4,4,4,4,4,4,4,4,2,2,2,2,2
%N Triangle read by rows in which row n lists the first 2^(n-1) terms of A006519 in nonincreasing order, n >= 1.
%C T(n,k) is also the number of parts in the k-th largest region of the diagram of regions of the set of compositions of n, n >= 1, k >= 1, see example.
%C Row lengths is A000079.
%C Row sums give A001792(n-1).
%e For n = 5 the diagram of regions of the set of compositions of 5 has 2^(5-1) regions, see below:
%e ------------------------------------------------------
%e . A006519
%e . as a tree
%e . of number Diagram
%e Region of parts of regions Composition
%e ------------------------------------------------------
%e . _ _ _ _ _
%e 1 | 1 | |_| | | | | 1, 1, 1, 1, 1
%e 2 | 2 | |_ _| | | | 2, 1, 1, 1
%e 3 | 1 | |_| | | | 1, 2, 1, 1
%e 4 | 4 | |_ _ _| | | 3, 1, 1
%e 5 | 1 | |_| | | | 1, 1, 2, 1
%e 6 | 2 | |_ _| | | 2, 2, 1
%e 7 | 1 | |_| | | 1, 3, 1
%e 8 | 8 | |_ _ _ _| | 4, 1
%e 9 | 1 | |_| | | | 1, 1, 1, 2
%e 10 | 2 | |_ _| | | 2, 1, 2
%e 11 | 1 | |_| | | 1, 2, 2
%e 12 | 4 | |_ _ _| | 3, 2
%e 13 | 1 | |_| | | 1, 1, 3
%e 14 | 2 | |_ _| | 2, 3
%e 15 | 1 | |_| | 1, 4
%e 16 | 16 | |_ _ _ _ _| 5
%e .
%e The first largest region in the diagram is the 16th region which contains 16 parts, so T(5,1) = 16. The second largest region is the 8th region which contains 8 parts, so T(5,2) = 8. The third and the fourth largest regions are both the 4th region and the 12th region, each contains 4 parts, so T(5,3) = 4 and T(5,4) = 4. And so on. The sequence of the number of parts of the k-th largest region of the diagram is [16, 8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], the same as the 5th row of triangle, as shown below.
%e Triangle begins:
%e 1;
%e 2,1;
%e 4,2,1,1;
%e 8,4,2,2,1,1,1,1;
%e 16,8,4,4,2,2,2,2,1,1,1,1,1,1,1,1;
%e 32,16,8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
%e ...
%Y Cf. A000079, A001511, A001792, A006519, A011782, A065120, A187818, A228525, A228369.
%K nonn,tabf,easy
%O 1,2
%A _Omar E. Pol_, Sep 10 2013