The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187601 n/2 times period 6 sequence [1, 2, 3, 4, 3, 2, ...]. 2
 0, 1, 3, 6, 6, 5, 3, 7, 12, 18, 15, 11, 6, 13, 21, 30, 24, 17, 9, 19, 30, 42, 33, 23, 12, 25, 39, 54, 42, 29, 15, 31, 48, 66, 51, 35, 18, 37, 57, 78, 60, 41, 21, 43, 66, 90, 69, 47, 24, 49, 75, 102, 78, 53, 27, 55, 84, 114, 87, 59, 30, 61, 93, 126, 96, 65, 33, 67, 102 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A007310 is a subsequence. LINKS Bruno Berselli, Table of n, a(n) for n = 0..5000 Index entries for linear recurrences with constant coefficients, signature (2,-1,-2,4,-2,-1,2,-1). FORMULA a(n) = (n/2)*A028356(n). G.f.: x*(1+x+x^2-x^3+x^4+x^5+x^6)/((1-x)^2*(1+x)^2*(1-x+x^2)^2). a(-n) = -a(n). a(n) = 2*a(n-1)-a(n-2)-2*a(n-3)+4*a(n-4)-2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8) for n>7. a(n) = n*(5-2*(-1)^floor((n+1)/3)-(-1)^n)/4. MATHEMATICA CoefficientList[Series[x (1 + x + x^2 - x^3 + x^4 + x^5 + x^6) / ((1 - x)^2 (1 + x)^2 (1 - x + x^2)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 19 2013 *) LinearRecurrence[{2, -1, -2, 4, -2, -1, 2, -1}, {0, 1, 3, 6, 6, 5, 3, 7}, 90] (* Harvey P. Dale, Aug 20 2017 *) PROG (Magma) [(n/2)*[1, 2, 3, 4, 3, 2][n mod 6 + 1]: n in [0..68]]; /* Other: */ [n*(5-2*(-1)^Floor((n+1)/3)-(-1)^n)/4: n in [0..68]]; CROSSREFS Cf. A186813. Cf. A109044, A088439 (by Superseeker). Sequence in context: A074785 A225462 A179949 * A113737 A292165 A327576 Adjacent sequences: A187598 A187599 A187600 * A187602 A187603 A187604 KEYWORD nonn,look,easy AUTHOR Bruno Berselli, Mar 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 20:45 EDT 2024. Contains 372758 sequences. (Running on oeis4.)