login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187495 Let i in {1,2,3,4} and r>=0 an integer. Let p={p_1,p_2,p_3,p_4}={-3,0,1,2}, n=3*r+p_i and define a(-3)=1. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,1,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(2*cos(Pi/9)). 4
0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1, 5, 1, 4, 1, 9, 5, 14, 6, 14, 7, 28, 20, 42, 27, 48, 34, 90, 75, 132, 109, 165, 143, 297, 274, 429, 417, 571, 560, 1000, 988, 1429, 1548, 1988, 2108, 3417, 3536, 4846, 5644, 6953, 7752, 11799, 12597 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

(Start) See A187498 for supporting theory. Define the matrix

U_1=

(0 1 0 0)

(1 0 1 0)

(0 1 0 1)

(0 0 1 1).

Let r>=0, and let A_r be the r-th "block" defined by A_r={a(3*r-3),a(3*r),a(3*r+1),a(3*r+2)} with a(-3)=1. Note that A_r-A_(r-1)-3*A_(r-2)+2*A_(r-3)+A_(r-4)={0,0,0,0}, for r>=4, with initial conditions {A_k}={{1,0,0,0},{0,1,0,0},{1,0,1,0},{0,2,0,1}}, k=0,1,2,3. Let p={p_1,p_2,p_3,p_4}={-3,0,1,2}, n=3*r+p_i and M=(m_(i,j))=(U_1)^r, i,j=1,2,3,4. Then A_r corresponds component-wise to the first column of M, and a(n)=a(3*r+p_i)=m_(i,1) gives the quantity of H_(9,1,0) tiles that should appear in a subdivided H_(9,i,r) tile. (End)

Since a(3*r)=a(3*(r+1)-3) for all r, this sequence arises by concatenation of first-column entries m_(2,1), m_(3,1) and m_(4,1) from successive matrices M=(U_1)^r.

This sequence is a nontrivial extension of A187496.

REFERENCES

L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,3,0,0,-2,0,0,-1).

FORMULA

Recurrence: a(n) = a(n-3) +3*a(n-6) -2*a(n-9) -a(n-12), for n>=12, with initial conditions {a(m)}={0,0,0,1,0,0,0,1,0,2,0,1}, m=0,1,...,11.

G.f.: x^3*(1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6+2*x^9+x^12).

MATHEMATICA

LinearRecurrence[{0, 0, 1, 0, 0, 3, 0, 0, -2, 0, 0, -1}, {0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1}, 50] (* G. C. Greubel, Apr 20 2018 *)

PROG

(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(x^3*(1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6+2*x^9+x^12))) \\ G. C. Greubel, Apr 20 2018

(MAGMA) I:=[0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1]; [n le 12 select I[n] else Self(n-3) + 3*Self(n-6) - 2*Self(n-9) - Self(n-12): n in [1..50]]; // G. C. Greubel, Apr 20 2018

CROSSREFS

Cf. A187496, A187497, A187498.

Sequence in context: A283929 A316401 A082513 * A187496 A193056 A244417

Adjacent sequences:  A187492 A187493 A187494 * A187496 A187497 A187498

KEYWORD

nonn,easy

AUTHOR

L. Edson Jeffery, Mar 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 09:23 EST 2018. Contains 317279 sequences. (Running on oeis4.)