login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the decimal digits of 1/k contain every digit at least once.
1

%I #7 Mar 30 2012 18:35:54

%S 17,19,23,29,34,38,46,47,49,51,53,57,58,59,61,68,69,71,76,83,85,87,89,

%T 92,94,95,97,98,102,103,107,109,113,114,115,116,118,119,121,122,127,

%U 129,131,133,136,138,139,141,142,145,147,149,151,152,153,157,161,163,166,167,169,170,171,173,174,177,178,179,181,183,184,188

%N Numbers k such that the decimal digits of 1/k contain every digit at least once.

%e 17 is in the sequence because 1/17 = .0588235294117647 0588235294117647 ...

%e contains every digit at least once ;

%e 31 is not in the sequence because 1/31 = .032258064516129 032258064516129...

%e without the digit 7.

%p with(numtheory):Digits:=200:B:={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: T:=array(1..250)

%p : for p from 1 to 200 do:ind:=0:n:=floor(evalf(10^200/p)):l:=length(n):n0:=n:s:=0:for

%p m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v : T[m]:=u:od: A:=convert(T,

%p set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `, p):else

%p fi:od:

%t A2 := {}; Do[ If[Length[Union[IntegerDigits[Floor[10^200/n]]]] == 10, A2 =

%t Join[A2, {n}]], {n, 1, 200}]; Print[A2]

%Y Cf. A187614.

%K nonn,base

%O 1,1

%A _Michel Lagneau_, Mar 09 2011