login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187372
Numbers k such that the decimal digits of 1/k contain every digit at least once.
1
17, 19, 23, 29, 34, 38, 46, 47, 49, 51, 53, 57, 58, 59, 61, 68, 69, 71, 76, 83, 85, 87, 89, 92, 94, 95, 97, 98, 102, 103, 107, 109, 113, 114, 115, 116, 118, 119, 121, 122, 127, 129, 131, 133, 136, 138, 139, 141, 142, 145, 147, 149, 151, 152, 153, 157, 161, 163, 166, 167, 169, 170, 171, 173, 174, 177, 178, 179, 181, 183, 184, 188
OFFSET
1,1
EXAMPLE
17 is in the sequence because 1/17 = .0588235294117647 0588235294117647 ...
contains every digit at least once ;
31 is not in the sequence because 1/31 = .032258064516129 032258064516129...
without the digit 7.
MAPLE
with(numtheory):Digits:=200:B:={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: T:=array(1..250)
: for p from 1 to 200 do:ind:=0:n:=floor(evalf(10^200/p)):l:=length(n):n0:=n:s:=0:for
m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v : T[m]:=u:od: A:=convert(T,
set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `, p):else
fi:od:
MATHEMATICA
A2 := {}; Do[ If[Length[Union[IntegerDigits[Floor[10^200/n]]]] == 10, A2 =
Join[A2, {n}]], {n, 1, 200}]; Print[A2]
CROSSREFS
Cf. A187614.
Sequence in context: A092216 A180948 A320869 * A106933 A191041 A106932
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Mar 09 2011
STATUS
approved