login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187124
G.f. A(x) satisfies: [x^(n+3)] A(F^n(x)) = 0 for n>0 where F^n(x) denotes the n-th iteration of F(x) = x+x^2 with F^0(x)=x.
6
1, -3, 6, -18, 48, -195, 549, -3465, 7452, -112707, -5994, -6866904, -25659292, -700243362, -5594278734, -106900155574, -1284177510456, -22692117042216, -348993455353854, -6343625959542180, -114598750263323292
OFFSET
3,2
EXAMPLE
G.f.: A(x) = x^3 - 3*x^4 + 6*x^5 - 18*x^6 + 48*x^7 - 195*x^8 +...
Let F^n(x) denote the n-th iteration of F(x) = x+x^2 with F^0(x)=x,
then the table of coefficients in A(F^n(x)), n>=0, begins:
[1, -3, 6, -18, 48, -195, 549, -3465, 7452, -112707, ...];
[1, 0, -3, -5, -12, -72, -333, -2568, -16782, -153204, ...];
[1, 3, 0, -19, -72, -261, -1276, -8079, -58932, -486635, ...];
[1, 6, 15, 0, -174, -1047, -5256, -29676, -202908, -1625427, ...];
[1, 9, 42, 112, 0, -2109, -17211, -112371, -753606, -5711283, ...];
[1, 12, 81, 377, 1128, 0, -31633, -324600, -2614344, -20650886, ...];
[1, 15, 132, 855, 4248, 14373, 0, -564081, -6957390, -66648777, ...];
[1, 18, 195, 1606, 10758, 58269, 221952, 0, -11639502, -167467539,..];
[1, 21, 270, 2690, 22416, 159633, 947117, 4029915, 0, -272551739,...];
[1, 24, 357, 4167, 41340, 359616, 2750067, 17848872, 84135510, 0,...]; ...
in which the main diagonal equals all zeros after the initial '1';
the lower triangular portion of the above table forms triangle A187124.
PROG
(PARI) {ITERATE(F, n, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
{a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(subst(x^3*Ser(A), x, ITERATE(x+x^2, i, #A)))[#A]); A[n]}
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 08 2011
STATUS
approved