login
A186844
Number of (n+1)X4 binary arrays with no 2X2 subblock diagonal sum less antidiagonal sum equal to any horizontal or vertical neighbor 2X2 subblock diagonal sum less antidiagonal sum
1
162, 970, 6138, 36988, 224714, 1371258, 8335676, 50707346, 308646310, 1877813892, 11425402866, 69522265266, 423014974740, 2573883848370, 15661241415990, 95293069634608, 579824378872438, 3528028603215862, 21466809826900456
OFFSET
1,1
COMMENTS
Column 3 of A186850
LINKS
FORMULA
Empirical: a(n)=2*a(n-1)+11*a(n-2)+63*a(n-3)+112*a(n-4)+120*a(n-5)+110*a(n-6)-849*a(n-7)-1709*a(n-8)-1167*a(n-9)+1006*a(n-10)+3341*a(n-11)+2742*a(n-12)+2484*a(n-13)-161*a(n-14)+363*a(n-15)-1203*a(n-16)+126*a(n-17)-1692*a(n-18)+806*a(n-19)-426*a(n-20)+204*a(n-21)+32*a(n-22) for n>23
EXAMPLE
Some solutions for 3X4
..1..1..1..1....0..0..0..0....1..0..1..1....1..0..1..1....1..0..1..0
..1..0..1..0....0..1..0..1....1..1..0..1....1..1..0..1....0..1..1..1
..0..1..1..0....0..1..1..1....1..0..0..1....1..0..1..0....0..0..1..1
CROSSREFS
Sequence in context: A206210 A044985 A302283 * A319915 A302731 A206145
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 27 2011
STATUS
approved