|
|
A186843
|
|
Number of (n+1) X 3 binary arrays with no 2 X 2 subblock diagonal sum less antidiagonal sum equal to any horizontal or vertical neighbor 2 X 2 subblock diagonal sum less antidiagonal sum.
|
|
1
|
|
|
50, 218, 970, 4194, 18246, 79778, 347530, 1514138, 6603034, 28783358, 125459410, 546925146, 2384168474, 10392867762, 45304600806, 197491613026, 860900508458, 3752824392746, 16359260883466, 71313013661214, 310866547441298
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) + 4*a(n-2) + 24*a(n-3) + 14*a(n-4) + 3*a(n-5) + 2*a(n-6).
Empirical g.f.: 2*x*(25 + 59*x + 167*x^2 + 91*x^3 + 23*x^4 + 14*x^5) / (1 - 2*x - 4*x^2 - 24*x^3 - 14*x^4 - 3*x^5 - 2*x^6). - Colin Barker, Apr 19 2018
|
|
EXAMPLE
|
Some solutions for 5 X 3:
..1..1..0....0..0..1....0..0..0....0..0..1....0..0..1....0..0..0....1..0..0
..1..0..1....0..1..1....0..0..1....0..1..0....1..1..1....0..1..0....0..1..1
..0..0..1....1..0..1....1..0..1....0..0..1....1..0..1....0..1..1....0..0..1
..0..0..0....0..1..0....0..1..0....0..1..0....0..1..1....0..0..0....1..1..1
..1..0..1....1..1..1....1..1..1....1..1..1....1..0..0....0..0..1....0..1..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|