login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of (n+2) X 3 binary arrays with each 3 X 3 subblock having sum 4 or 5.
1

%I #8 Apr 19 2018 05:59:59

%S 126,606,2904,14229,70767,351549,1750896,8730234,43522407,217032372,

%T 1082345247,5397586308,26918218566,134243793585,669486128850,

%U 3338798653422,16650942997338,83040015704427,414129463721703

%N Half the number of (n+2) X 3 binary arrays with each 3 X 3 subblock having sum 4 or 5.

%C Column 1 of A186825.

%H R. H. Hardin, <a href="/A186817/b186817.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 3*a(n-1) + 9*a(n-2) + 15*a(n-3) - 36*a(n-4) - 72*a(n-5) - 27*a(n-6) - 81*a(n-7).

%F Empirical g.f.: 3*x*(42 + 76*x - 16*x^2 - 609*x^3 - 870*x^4 - 495*x^5 - 837*x^6) / (1 - 3*x - 9*x^2 - 15*x^3 + 36*x^4 + 72*x^5 + 27*x^6 + 81*x^7). - _Colin Barker_, Apr 19 2018

%e Some solutions for 4 X 3 with a(1,1)=0:

%e ..0..1..0....0..1..0....0..1..0....0..0..1....0..0..1....0..1..0....0..0..1

%e ..0..0..1....0..1..1....1..0..1....1..1..1....1..0..0....1..0..1....0..1..1

%e ..0..1..1....0..1..0....0..0..1....0..0..0....0..1..1....0..1..1....0..1..0

%e ..0..0..1....1..0..0....0..0..1....1..0..0....0..1..0....1..0..0....1..0..1

%Y Cf. A186825.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 27 2011