login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186817
Half the number of (n+2) X 3 binary arrays with each 3 X 3 subblock having sum 4 or 5.
1
126, 606, 2904, 14229, 70767, 351549, 1750896, 8730234, 43522407, 217032372, 1082345247, 5397586308, 26918218566, 134243793585, 669486128850, 3338798653422, 16650942997338, 83040015704427, 414129463721703
OFFSET
1,1
COMMENTS
Column 1 of A186825.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 9*a(n-2) + 15*a(n-3) - 36*a(n-4) - 72*a(n-5) - 27*a(n-6) - 81*a(n-7).
Empirical g.f.: 3*x*(42 + 76*x - 16*x^2 - 609*x^3 - 870*x^4 - 495*x^5 - 837*x^6) / (1 - 3*x - 9*x^2 - 15*x^3 + 36*x^4 + 72*x^5 + 27*x^6 + 81*x^7). - Colin Barker, Apr 19 2018
EXAMPLE
Some solutions for 4 X 3 with a(1,1)=0:
..0..1..0....0..1..0....0..1..0....0..0..1....0..0..1....0..1..0....0..0..1
..0..0..1....0..1..1....1..0..1....1..1..1....1..0..0....1..0..1....0..1..1
..0..1..1....0..1..0....0..0..1....0..0..0....0..1..1....0..1..1....0..1..0
..0..0..1....1..0..0....0..0..1....1..0..0....0..1..0....1..0..0....1..0..1
CROSSREFS
Cf. A186825.
Sequence in context: A267566 A165023 A186825 * A107658 A181254 A004008
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 27 2011
STATUS
approved