Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Aug 30 2018 08:39:33
%S 0,0,0,1,8,59,458,3865,35688,360127,3956214,47096633,604722604,
%T 8337692687,122932350162,1930964182649,32201197533072,568323756438079,
%U 10585305178638446,207520767220183033,4272031355927379828,92145190111463378863,2078280173125850650890
%N Number of non-up-down cycles in all permutations of {1,2,...,n}. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1)<b(2)>b(3)<... .
%H Vincenzo Librandi, <a href="/A186362/b186362.txt">Table of n, a(n) for n = 0..200</a>
%H E. Deutsch and S. Elizalde, <a href="http://arxiv.org/abs/0909.5199">Cycle up-down permutations</a>, arXiv:0909.5199 [math.CO], 2009.
%F E.g.f.: log( (1-sin(z))/(1-z) ) / (1-z).
%F a(n) = Sum(k*A186361(n,k), k>=0).
%F a(n) = n!*Sum(((j-1)!-E(j-1))/j!, j=1..n), where E(i)=A000111(i) are the Euler (or up-down) numbers.
%F a(n) ~ n! * (log(n) + gamma + log(1-sin(1))), where gamma is the Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Oct 02 2013
%e a(3) = 10 because the permutations (1)(2)(3), (12)(3), (13)(2), (1)(23), (132), and (123) have a total of 3 + 2 + 2 + 2 + 0 + 1 = 10 up-down cycles.
%p g := ln((1-sin(z))/(1-z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
%t CoefficientList[Series[Log[(1-Sin[x])/(1-x)]/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 02 2013 *)
%o (PARI) x='x+O('x^30); concat(vector(3), Vec(serlaplace(log((1-sin(x))/(1-x))/(1-x)))) \\ _G. C. Greubel_, Aug 30 2018
%Y Cf. A000111, A186361, A186358, A186360.
%K nonn
%O 0,5
%A _Emeric Deutsch_, Feb 28 2011