login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186251
2n-th derivative of sec(x)^cosh(x) at x=0.
1
1, 1, 11, 196, 6621, 331816, 23484911, 2215289896, 268265691081, 40520069205136, 7462406090362331, 1645244324233761736, 427705624174427756061, 129446242864616486729896, 45117167155416556090204871, 17939982317115194446562110816, 8071743191485825080634857996561
OFFSET
0,3
COMMENTS
sec(x) = 1/cos(x).
The sequence gives only 2n-th derivatives because (2n+1)-th derivatives are 0.
LINKS
FORMULA
a(n) = (2n)! * [x^(2n)] sec(x)^cosh(x).
a(n) ~ 2^(4*n+2*cosh(Pi/2)+1) * n^(2*n+cosh(Pi/2)-1/2) / (GAMMA(cosh(Pi/2)) * exp(2*n) * Pi^(2*n+cosh(Pi/2)-1/2)). - Vaclav Kotesovec, Aug 22 2014
MAPLE
b:= n-> n! *coeff(series(sec(x)^cosh(x), x, n+1), x, n):
a:= n-> b(2*n):
seq (a(n), n=0..20); # Alois P. Heinz, Aug 18 2012
MATHEMATICA
f[x_] := Sec[x]^Cosh[x]; Table[Derivative[2*n] [f][0], {n, 0, 17}]
nmax=40; Table[(CoefficientList[Series[Sec[x]^Cosh[x], {x, 0, nmax}], x] *Range[0, nmax]!)[[n]], {n, 1, nmax, 2}] (* Vaclav Kotesovec, Aug 22 2014 *)
CROSSREFS
Sequence in context: A345342 A218818 A243646 * A234628 A105124 A272500
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 18 2012
STATUS
approved