login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186090
Number of (n+2)X5 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
1
11258613, 280102672, 4527262140, 55707179395, 558643720724, 4754203179765, 35285910378578, 232998389350277, 1389861134920751, 7581135805604097, 38188894333159149, 179116588954318878, 787613147423182292
OFFSET
1,1
COMMENTS
Column 3 of A186096
LINKS
FORMULA
Empirical: a(n) = (73/780558954307155499190634781246950872186880000000)*n^42
+ (13457/180824468179263822206324659748328387379200000000)*n^41
+ (3900581/135985880541316289057601878266019315712000000000)*n^40
+ (34573607/3547457753251729279763527259113547366400000000)*n^39
+ (783095609/261511308733300555880003612050037145600000000)*n^38
+ (157680394517/220220049459621520741055673305294438400000000)*n^37
+ (4449274379387/34719377167057446963679948494077952000000000)*n^36
+ (78266544045647/4463919921478814609615993377810022400000000)*n^35
+ (351711904372487/185996663394950608733999724075417600000000)*n^34
+ (6672186316510963/40397465352749453480687722876108800000000)*n^33
+ (227175899704566161/19027791651657351277135521644544000000000)*n^32
+ (1413399090272799163/1945063146613862574996075545886720000000)*n^31
+ (2425160040317086077469/64234141817611026166201043229081600000000)*n^30
+ (1308646465558482919369/772741555700583773427982474936320000000)*n^29
+ (8213920694956950635983/124087978011418962940598943744000000000)*n^28
+ (5617282592462587740731/2472065186946237152332244582400000000)*n^27
+ (1521762722497945153402541/22068569627876972486051135225856000000)*n^26
+ (1878543024001065125286721/1010003186630525056569846005760000000)*n^25
+ (19717317282559725840243293103257/440267964076145601096720147755827200000000)*n^24
+ (36446427572892822692407351649479/37737254063669622951147441236213760000000)*n^23
+ (638998422910875785524665678547/34182295347526832383285725757440000000)*n^22
+ (410339155805630961759651456959341/1262115520524067657229011412582400000000)*n^21
+ (1597892128488008319769676720915853731/314477117197246857926228676968448000000000)*n^20
+ (118015939736082965864789540542347989/1655142722090772936453835141939200000000)*n^19
+ (22520321279448444798605884585883924747/25102997951710056202883166319411200000000)*n^18
+ (208434692374593985301910711360962527/20636370256246849271643085209600000000)*n^17
+ (40155510721702241732533453141570195711/395530429911397944373159133184000000000)*n^16
+ (107825268730953277264995498539714242159/118659128973419383311947739955200000000)*n^15
+ (318616883175578368540913621780089270543/44116855643963616872390826393600000000)*n^14
+ (747073340688717248973589706042919081053/14705618547987872290796942131200000000)*n^13
+ (443493217956706208236819899328289622001969/1407846716873544832545413136384000000000)*n^12
+ (32621201841163616405254679822642326961/19042363199148873893680250880000000)*n^11
+ (113921405629950674287156063055479914539627/14039603215198566480525341491200000000)*n^10
+ (1144524508165891320553030705838759610107/34499024994611862078213980160000000)*n^9
+ (432497307915044598355384092794497612462427/3737394374416285058473181184000000000)*n^8
+ (61814920247335881381979777245139927327/182134228772723443395379200000000)*n^7
+ (163824786702020604320943990364873597119237371/199243608595444170038087349903360000000)*n^6
+ (9556363100363254083446664661866985861/5935805108544382776767462400000)*n^5
+ (2788041811480138681735984949313139707043/1129498914940159694093465702400000)*n^4
+ (27300487560154033333750602692383903/9743779459456174034622720000)*n^3
+ (15469108906282154365785469517369/7285083194795024114496000)*n^2
+ (5578947488502101228747/6258862563988320)*n
+ 42948
EXAMPLE
Some solutions for 4X5
..0..0..0..0..0....0..0..0..1..2....0..0..0..1..1....0..0..0..1..2
..0..0..0..1..4....0..0..0..1..3....0..0..0..2..4....0..0..0..1..3
..0..0..0..4..3....0..0..0..1..4....0..0..0..4..0....0..0..0..3..3
..0..0..0..4..3....0..0..0..4..2....0..0..2..0..2....0..0..2..1..2
CROSSREFS
Sequence in context: A253967 A253763 A331359 * A233847 A069341 A204790
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 12 2011
STATUS
approved