login
A186088
Number of (n+2)X3 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
1
102251, 1252889, 11258613, 83378583, 531218757, 2985984444, 15084070635, 69482992431, 295278398390, 1168636004931, 4340861873151, 15229963644864, 50743091539034, 161283018943658, 490947611660031, 1436133677832325
OFFSET
1,1
COMMENTS
Column 1 of A186096
LINKS
FORMULA
Empirical: a(n) = (1/295232799039604140847618609643520000000)*n^34
+ (1/36561337342365837875866081689600000)*n^33
+ (1151/78939251080108059050165403648000000)*n^32
+ (57793/15180625207713088278877962240000000)*n^31
+ (8146051/12732137270985170814542807040000000)*n^30
+ (15252793/195879034938233397146812416000000)*n^29
+ (917629/125082397789421070974976000000)*n^28
+ (40844936773/73173202706811326520360960000000)*n^27
+ (10326664514897/292692810827245306081443840000000)*n^26
+ (1699793021071/900593264083831711019827200000)*n^25
+ (21419403120091/247663147623053720530452480000)*n^24
+ (3257433593147959/952550567780975848194048000000)*n^23
+ (149148353528547551/1272577438379327417745408000000)*n^22
+ (888681424414566953/254515487675865483549081600000)*n^21
+ (11531836957656612161/127257743837932741774540800000)*n^20
+ (5909972330146165909/2879134475971328999424000000)*n^19
+ (185196564663366054480883/4554487674199698126667776000000)*n^18
+ (223744365124534317893/317054484803320440422400000)*n^17
+ (631124705896508562289697/58734343309815111588249600000)*n^16
+ (7215220158705833717523107/50233319936026082279424000000)*n^15
+ (44200951728497459126549888033/26246909666573627990999040000000)*n^14
+ (1394814879695359558279349521/80759722050995778433843200000)*n^13
+ (32548509299450082036607825951/211076546269648057270272000000)*n^12
+ (48337137666188129039919297713/40591643513393857167360000000)*n^11
+ (18053107623124660173941442743743/2286662584587853953761280000000)*n^10
+ (2266224377869928249871300899693/50814724101952310083584000000)*n^9
+ (902210285827865272553906095027/4234560341829359173632000000)*n^8
+ (57964514565563064206413856761/67861543939573063680000000)*n^7
+ (2023140467628393995969236886677/710661168478306805760000000)*n^6
+ (25417310330253175708558630751/3279974623746031411200000)*n^5
+ (61858293620765291251250539109/3728237822324655704064000)*n^4
+ (12364083190538430205351213/471396394434917952000)*n^3
+ (8255316109684330210707767/294877831150846944000)*n^2
+ (1418176238189177/80224196052)*n
+ 2040
EXAMPLE
Some solutions for 4X3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..0..0..3....0..3..3....0..0..3....0..1..4....0..1..1....0..0..1....0..0..1
..1..4..2....1..2..2....0..2..3....0..3..3....2..0..2....0..1..2....2..3..3
..4..4..2....1..4..4....3..1..0....1..3..2....4..0..0....0..3..0....3..3..0
CROSSREFS
Sequence in context: A203592 A106813 A186096 * A186087 A106814 A220076
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 12 2011
STATUS
approved