login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows. The n-th row is the expansion of (1+x)(1+2x+4x^2)...(1+nx+(nx)^2+(nx)^3+...(nx)^n).
1

%I #13 Jul 08 2017 12:44:15

%S 1,1,1,1,3,6,4,1,6,24,76,147,198,108,1,10,64,332,1475,5074,14260,

%T 32464,52032,57600,27648,1,15,139,1027,6610,38124,189255,822489,

%U 3164477,10692485,30443198,72934740,141861200,202056000,197280000,86400000

%N Triangular array read by rows. The n-th row is the expansion of (1+x)(1+2x+4x^2)...(1+nx+(nx)^2+(nx)^3+...(nx)^n).

%C T(n,k) is the sum of products of the elements in the size k submultisets of the multiset {1,2,2,3,3,3,...n} which contains i copies of i, 1<=i<=n.

%C The n-th row has n*(n+1)/2+1 elements: 0 <= k <= A000217(n).

%H G. C. Greubel, <a href="/A185588/b185588.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%F O.g.f. for row n: Product_{j=1..n} Sum_{i=0..j} (j*x)^i.

%e T(3,2) = 24 because the size 2 submultisets of {1,2,2,3,3,3} are: {1,2},{1,3}, {2,2}, {2,3}, {3,3}. And 1*2 + 1*3 + 2*2 + 2*3 + 3*3 = 24.

%e Triangle T(n,k) begins:

%e 1;

%e 1, 1;

%e 1, 3, 6, 4;

%e 1, 6, 24, 76, 147, 198, 108;

%e 1, 10, 64, 332, 1475, 5074, 14260, 32464, 52032, 57600, 27648;

%p T:= (n,k)-> coeff (mul (add ((j*x)^i, i=0..j), j=1..n), x, k):

%p seq (seq (T(n,k), k=0..n*(n+1)/2), n=0..7);

%t Table[CoefficientList[Series[Product[Sum[(j x)^i,{i,0,j}],{j,1,n}],{x,0,20}],x],{n,0,5}]//Grid

%Y Cf. A000217.

%K nonn,tabf

%O 0,5

%A _Geoffrey Critzer_, Feb 04 2011