login
A185550
Numbers not of the form ceiling(n^(3/2)); complement of A185549.
2
2, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150
OFFSET
1,1
LINKS
MATHEMATICA
f[n_]=Ceiling[n^(3/2)];
t1=Table[f[n], {n, 1, 90}]; t1 (* A185549 *)
t2=Complement[Range[150], Table[f[n], {n, 1, 80}]]; t2 (* A185550 *)
PROG
(Haskell)
import Data.List.Ordered (minus)
a185550 n = a185550_list !! (n-1)
a185550_list = [0..] `minus` a185549_list
-- Reinhard Zumkeller, Jul 24 2015
(Python)
from sympy import integer_nthroot
def A185550(n):
def f(x): return n+integer_nthroot(x**2, 3)[0]
def iterfun(f, n=0):
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m
return iterfun(f, n) # Chai Wah Wu, Sep 09 2024
CROSSREFS
Sequence in context: A288217 A026457 A185598 * A189629 A063113 A122825
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 30 2011
STATUS
approved