login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185550
Numbers not of the form ceiling(n^(3/2)); complement of A185549.
2
2, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150
OFFSET
1,1
LINKS
MATHEMATICA
f[n_]=Ceiling[n^(3/2)];
t1=Table[f[n], {n, 1, 90}]; t1 (* A185549 *)
t2=Complement[Range[150], Table[f[n], {n, 1, 80}]]; t2 (* A185550 *)
PROG
(Haskell)
import Data.List.Ordered (minus)
a185550 n = a185550_list !! (n-1)
a185550_list = [0..] `minus` a185549_list
-- Reinhard Zumkeller, Jul 24 2015
(Python)
from sympy import integer_nthroot
def A185550(n):
def f(x): return n+integer_nthroot(x**2, 3)[0]
def iterfun(f, n=0):
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m
return iterfun(f, n) # Chai Wah Wu, Sep 09 2024
CROSSREFS
Sequence in context: A288217 A026457 A185598 * A189629 A063113 A122825
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 30 2011
STATUS
approved