login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A000108(n)*A015518(n+1), where A000108 are the Catalan numbers and A015518(n) = 2*A015518(n-1) + 3*A015518(n-2).
1

%I #29 Apr 12 2023 11:23:35

%S 1,2,14,100,854,7644,72204,703560,7037030,71772844,743844452,

%T 7810307960,82909630972,888316731800,9593823377880,104332819539600,

%U 1141523825614470,12556761952114380,138785264158902900,1540516430396559000,17165754516697206420,191944345934966132040

%N a(n) = A000108(n)*A015518(n+1), where A000108 are the Catalan numbers and A015518(n) = 2*A015518(n-1) + 3*A015518(n-2).

%C More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, S(0)=1, then

%C Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.

%H G. C. Greubel, <a href="/A185010/b185010.txt">Table of n, a(n) for n = 0..925</a>

%H S. B. Ekhad and M. Yang, <a href="http://sites.math.rutgers.edu/~zeilberg/tokhniot/oMathar1maple12.txt">Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences</a>, (2017).

%F G.f.: sqrt( (1-4*x - sqrt(1-8*x-48*x^2))/32 )/x.

%F G.f.: sqrt( M(4*x) ), where M(x) is g.f. of A001006. - _Werner Schulte_, Aug 10 2015

%F Conjecture: n*(n+1)*a(n) -4*n*(2*n-1)*a(n-1) -12*(2*n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Oct 08 2016

%F G.f: B(m(4z)/4), where B(x) is the g.f. of A000984 and m(x) is the g.f. of A086246. - _Alexander Burstein_, May 20 2021

%e G.f.: A(x) = 1 + 1*2*x + 2*7*x^2 + 5*20*x^3 + 14*61*x^4 + 42*182*x^5 + 132*547*x^6 +...+ A000108(n)*A015518(n+1)*x^n +...

%t CoefficientList[Series[Sqrt[(1 - 4*x - Sqrt[1 - 8*x - 48*x^2])/32]/x, {x, 0, 50}], x] (* _G. C. Greubel_, Jun 09 2017 *)

%o (PARI) {A000108(n)=binomial(2*n,n)/(n+1)}

%o {A015518(n)=polcoeff(x/(1-2*x-3*x^2 +x*O(x^n)),n)}

%o {a(n)=A000108(n)*A015518(n+1)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A000108, A001006, A015518.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 26 2012