login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} floor(k*gamma) where gamma is Euler's constant (A001620).
1

%I #21 Sep 08 2022 08:45:55

%S 0,1,2,4,6,9,13,17,22,27,33,39,46,54,62,71,80,90,100,111,123,135,148,

%T 161,175,190,205,221,237,254,271,289,308,327,347,367,388,409,431,454,

%U 477,501,525,550,575,601,628,655,683,711,740,770,800,831,862,894,926,959,993,1027,1062

%N a(n) = Sum_{k=1..n} floor(k*gamma) where gamma is Euler's constant (A001620).

%C a(n) = A183143(n) for n = 1..96 where A183143(n) is the sequence floor(1/r) + floor(2/r) + ... + floor(n/r) and r = sqrt(3). It is interesting to note that a(n)/n^2 converges to gamma/2.

%C gamma = 0.57721566490153286060651209... (A002852)

%C 1/sqrt(3) = 0.577350269189625764509148... (A020760)

%H G. C. Greubel, <a href="/A184977/b184977.txt">Table of n, a(n) for n = 1..5000</a>

%F Partial sums of A038128.

%p with(numtheory):Digits:=500:s:=0:c:=evalf(gamma(0)):for n from 1 to 100 do:

%p s:=s+floor(n*c):printf(`%d, `,s):od:

%t Table[Sum[Floor[k*EulerGamma], {k, 1, n}], {n, 50}] (* _G. C. Greubel_, Jun 02 2017 *)

%o (PARI) a(n) = sum(k=1, n, floor(k*Euler)); \\ _Michel Marcus_, Apr 02 2017

%o (Magma) R:=RealField(100); [(&+[Floor(k*EulerGamma(R)): k in [1..n]]): n in [1..50]]; // _G. C. Greubel_, Aug 27 2018

%Y Cf. A001620, A038128.

%K nonn

%O 1,3

%A _Michel Lagneau_, Mar 27 2011

%E Name edited by _Jon E. Schoenfield_, Apr 02 2017