login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184977
a(n) = Sum_{k=1..n} floor(k*gamma) where gamma is Euler's constant (A001620).
1
0, 1, 2, 4, 6, 9, 13, 17, 22, 27, 33, 39, 46, 54, 62, 71, 80, 90, 100, 111, 123, 135, 148, 161, 175, 190, 205, 221, 237, 254, 271, 289, 308, 327, 347, 367, 388, 409, 431, 454, 477, 501, 525, 550, 575, 601, 628, 655, 683, 711, 740, 770, 800, 831, 862, 894, 926, 959, 993, 1027, 1062
OFFSET
1,3
COMMENTS
a(n) = A183143(n) for n = 1..96 where A183143(n) is the sequence floor(1/r) + floor(2/r) + ... + floor(n/r) and r = sqrt(3). It is interesting to note that a(n)/n^2 converges to gamma/2.
gamma = 0.57721566490153286060651209... (A002852)
1/sqrt(3) = 0.577350269189625764509148... (A020760)
LINKS
FORMULA
Partial sums of A038128.
MAPLE
with(numtheory):Digits:=500:s:=0:c:=evalf(gamma(0)):for n from 1 to 100 do:
s:=s+floor(n*c):printf(`%d, `, s):od:
MATHEMATICA
Table[Sum[Floor[k*EulerGamma], {k, 1, n}], {n, 50}] (* G. C. Greubel, Jun 02 2017 *)
PROG
(PARI) a(n) = sum(k=1, n, floor(k*Euler)); \\ Michel Marcus, Apr 02 2017
(Magma) R:=RealField(100); [(&+[Floor(k*EulerGamma(R)): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Aug 27 2018
CROSSREFS
Sequence in context: A194213 A194209 A183143 * A025705 A022792 A025697
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 27 2011
EXTENSIONS
Name edited by Jon E. Schoenfield, Apr 02 2017
STATUS
approved