OFFSET
1,2
COMMENTS
Conjecture: a(n) = A014616(n-1). - R. J. Mathar, Jan 29 2011
The above conjecture is true. - Stefano Spezia, Apr 04 2023
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>=6.
G.f.: x*(x^4 - x^3 - 1)/((x + 1)*(x - 1)^3). - Álvar Ibeas, Jul 20 2021
a(n) = (2*n^2 + 8*n - 9 + (-1)^n)/8 for n > 1. - Stefano Spezia, Apr 04 2023
MAPLE
MATHEMATICA
a[n_]:=n+Floor[(n/2-1/(2n))^2];
b[n_]:=n+Floor[n^(1/2)+(n+1)^(1/2)];
Table[a[n], {n, 1, 120}] (* A184674 *)
Table[b[n], {n, 1, 120}] (* A184675 *)
FindLinearRecurrence[Table[a[n], {n, 1, 120}]]
Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {2, 4, 7, 10}, 72]] (* Ray Chandler, Aug 02 2015 *)
PROG
(Magma) [n+Floor((n/2-1/(2*n))^2): n in [1..80]]; // Vincenzo Librandi, Jul 10 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 19 2011
STATUS
approved