login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(n,k) is the number of vertices having escape distance k>=0 in the rooted tree having Matula-Goebel number n.
4

%I #30 Jun 27 2024 10:20:03

%S 1,1,1,1,1,1,2,1,1,1,1,1,2,2,2,1,1,3,1,2,2,1,2,2,1,1,1,1,1,1,3,2,2,2,

%T 1,3,2,2,2,2,4,1,2,1,1,1,3,3,3,1,1,3,2,1,3,2,1,2,2,1,1,2,2,1,1,4,2,2,

%U 2,2,1,3,3,3,3,1,4,2,2,2,2,3,3,1,1,1,1,1,1,1,5,1,2,2,2,1,3,2,1,3,2,2,4,3,3,2,1,4,2,3,3,1,4,2,1

%N Irregular triangle read by rows: T(n,k) is the number of vertices having escape distance k>=0 in the rooted tree having Matula-Goebel number n.

%C The escape distance of a vertex v in a rooted tree T is the distance from v to the nearest leaf of T that is a descendant of v. For the rooted tree ARBCDEF, rooted at R, the escape distance of B is 4 (the leaf A is not a descendant of B).

%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

%C Each row is nonincreasing (each vertex with escape distance k (k>=1) is the parent of some vertex with escape distance k-1).

%D F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.

%D I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.

%D I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.

%D D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

%H Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Tree statistics from Matula numbers</a>, arXiv preprint arXiv:1111.4288 [math.CO], 2011.

%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>

%F We give the recursive construction of the row generating polynomials P(n)=P(n,x): if n = prime(t), then P(n)=P(t)+x^{1+LLL(t)}; if n=r*s (r,s>=2), then P(n)=P(r)+P(s)-x^{max(LLL(r),LLL(s))}; LLL denotes the level of the lowest leaf (computed recursively and programmed in A184166) (2nd Maple program yields P(n)).

%e Row n=7 is [2,1,1] because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having 2 leaves and 1 (1) vertex at distance 1 (2) from either of the leaves.

%e Triangle starts:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 2, 1;

%e 1, 1, 1, 1;

%e 2, 2;

%e 2, 1, 1;

%e ...

%p with(numtheory): P := proc (n) local r, s, LLL: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: LLL := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+LLL(pi(n)) else min(LLL(r(n)), LLL(s(n))) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then P(pi(n))+x^(1+LLL(pi(n))) else P(r(n))+P(s(n))-x^max(LLL(r(n)), LLL(s(n))) end if end proc: for n to 30 do seq(coeff(P(n), x, k), k = 0 .. degree(P(n))) end do; # yields sequence in triangular form

%p with(numtheory): P := proc (n) local r, s, LLL: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: LLL := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+LLL(pi(n)) else min(LLL(r(n)), LLL(s(n))) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then P(pi(n))+x^(1+LLL(pi(n))) else P(r(n))+P(s(n))-x^max(LLL(r(n)), LLL(s(n))) end if end proc: P(998877665544);

%t r[n_] := FactorInteger[n][[1, 1]];

%t s[n_] := n/r[n];

%t LLL[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, 1 + LLL[PrimePi[n]], True, Min[LLL[r[n]], LLL[s[n]]]];

%t P[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, P[PrimePi[n]] + x^(1 + LLL[PrimePi[n]]), True, P[r[n]] + P[s[n]] - x^Max[LLL[r[n]], LLL[s[n]]]];

%t T[n_] := CoefficientList[P[n], x];

%t Table[T[n], {n, 1, 40}] // Flatten (* _Jean-François Alcover_, Jun 24 2024, after Maple code *)

%Y Cf. A184166, A184170.

%K nonn,tabf

%O 1,7

%A _Emeric Deutsch_, Oct 23 2011