login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184167
Irregular triangle read by rows: T(n,k) is the number of vertices having escape distance k>=0 in the rooted tree having Matula-Goebel number n.
4
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 4, 1, 2, 1, 1, 1, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 2, 2, 2, 2, 1, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 2, 2, 1, 3, 2, 1, 3, 2, 2, 4, 3, 3, 2, 1, 4, 2, 3, 3, 1, 4, 2, 1
OFFSET
1,7
COMMENTS
The escape distance of a vertex v in a rooted tree T is the distance from v to the nearest leaf of T that is a descendant of v. For the rooted tree ARBCDEF, rooted at R, the escape distance of B is 4 (the leaf A is not a descendant of B).
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
Each row is nonincreasing (each vertex with escape distance k (k>=1) is the parent of some vertex with escape distance k-1).
REFERENCES
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
FORMULA
We give the recursive construction of the row generating polynomials P(n)=P(n,x): if n = prime(t), then P(n)=P(t)+x^{1+LLL(t)}; if n=r*s (r,s>=2), then P(n)=P(r)+P(s)-x^{max(LLL(r),LLL(s))}; LLL denotes the level of the lowest leaf (computed recursively and programmed in A184166) (2nd Maple program yields P(n)).
EXAMPLE
Row n=7 is [2,1,1] because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having 2 leaves and 1 (1) vertex at distance 1 (2) from either of the leaves.
Triangle starts:
1;
1, 1;
1, 1, 1;
2, 1;
1, 1, 1, 1;
2, 2;
2, 1, 1;
...
MAPLE
with(numtheory): P := proc (n) local r, s, LLL: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: LLL := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+LLL(pi(n)) else min(LLL(r(n)), LLL(s(n))) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then P(pi(n))+x^(1+LLL(pi(n))) else P(r(n))+P(s(n))-x^max(LLL(r(n)), LLL(s(n))) end if end proc: for n to 30 do seq(coeff(P(n), x, k), k = 0 .. degree(P(n))) end do; # yields sequence in triangular form
with(numtheory): P := proc (n) local r, s, LLL: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: LLL := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+LLL(pi(n)) else min(LLL(r(n)), LLL(s(n))) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then P(pi(n))+x^(1+LLL(pi(n))) else P(r(n))+P(s(n))-x^max(LLL(r(n)), LLL(s(n))) end if end proc: P(998877665544);
MATHEMATICA
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
LLL[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, 1 + LLL[PrimePi[n]], True, Min[LLL[r[n]], LLL[s[n]]]];
P[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, P[PrimePi[n]] + x^(1 + LLL[PrimePi[n]]), True, P[r[n]] + P[s[n]] - x^Max[LLL[r[n]], LLL[s[n]]]];
T[n_] := CoefficientList[P[n], x];
Table[T[n], {n, 1, 40}] // Flatten (* Jean-François Alcover, Jun 24 2024, after Maple code *)
CROSSREFS
Sequence in context: A073454 A124765 A080356 * A352085 A036541 A176505
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 23 2011
STATUS
approved