Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Aug 19 2022 12:37:36
%S 1,1,3,1,9,11,1,11,31,21,1,19,65,107,61,1,25,109,243,501,179,1,31,143,
%T 541,1731,2339,447,1,33,207,839,4769,11251,10303,1243,1,41,245,1531,
%U 10135,40483,67083,44523,3359,1,43,337,2145,21411,106047,327223,426379
%N T(n,k) = Number of strings of n+2 numbers x(i) in -k..k with the sum of x(i) equal to zero and the sums of x(i)*x(i+1) and x(i)*x(i+2) equal to each other.
%C Table starts
%C ....1......1........1........1.......1.......1......1......1.....1....1...1..1
%C ....3......9.......11.......19......25......31.....33.....41....43...53..59.75
%C ...11.....31.......65......109.....143.....207....245....337...427..491.573
%C ...21....107......243......541.....839....1531...2145...3345..4477.6181
%C ...61....501.....1731.....4769...10135...21411..35451..59353.89619
%C ..179...2339....11251....40483..106047..251231.496519.945243
%C ..447..10303....67083...327223.1015445.2880959
%C .1243..44523...426379..2590527.9974135
%C .3359.198695..2719451.20896283
%C .9465.888601.17387313
%H R. H. Hardin, <a href="/A184061/b184061.txt">Table of n, a(n) for n = 1..84</a>
%e Some solutions for n=5, k=4
%e ..3....3....1....1...-1....2....3....0....1....1...-2...-1...-1...-2....1....2
%e ..1...-2....0...-4...-2....1....0...-1...-4....0...-2....0...-2...-2...-2....3
%e .-4...-4...-4....0...-4...-2...-2....2...-1....2...-3....2....0...-1...-1...-1
%e ..2....2....1...-2....4...-4....1....4....1....0....2....1....0....0....1....4
%e .-1....1....0....0....1....2...-4...-2...-1....1...-1....0....1....2...-1...-2
%e .-3....4....1....3....2...-1....0....0....3....0....3...-4....0....0....1...-3
%e ..2...-4....1....2....0....2....2...-3....1...-4....3....2....2....3....1...-3
%K nonn,tabl
%O 1,3
%A _R. H. Hardin_, Jan 09 2011