login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184061
T(n,k) = Number of strings of n+2 numbers x(i) in -k..k with the sum of x(i) equal to zero and the sums of x(i)*x(i+1) and x(i)*x(i+2) equal to each other.
9
1, 1, 3, 1, 9, 11, 1, 11, 31, 21, 1, 19, 65, 107, 61, 1, 25, 109, 243, 501, 179, 1, 31, 143, 541, 1731, 2339, 447, 1, 33, 207, 839, 4769, 11251, 10303, 1243, 1, 41, 245, 1531, 10135, 40483, 67083, 44523, 3359, 1, 43, 337, 2145, 21411, 106047, 327223, 426379
OFFSET
1,3
COMMENTS
Table starts
....1......1........1........1.......1.......1......1......1.....1....1...1..1
....3......9.......11.......19......25......31.....33.....41....43...53..59.75
...11.....31.......65......109.....143.....207....245....337...427..491.573
...21....107......243......541.....839....1531...2145...3345..4477.6181
...61....501.....1731.....4769...10135...21411..35451..59353.89619
..179...2339....11251....40483..106047..251231.496519.945243
..447..10303....67083...327223.1015445.2880959
.1243..44523...426379..2590527.9974135
.3359.198695..2719451.20896283
.9465.888601.17387313
LINKS
EXAMPLE
Some solutions for n=5, k=4
..3....3....1....1...-1....2....3....0....1....1...-2...-1...-1...-2....1....2
..1...-2....0...-4...-2....1....0...-1...-4....0...-2....0...-2...-2...-2....3
.-4...-4...-4....0...-4...-2...-2....2...-1....2...-3....2....0...-1...-1...-1
..2....2....1...-2....4...-4....1....4....1....0....2....1....0....0....1....4
.-1....1....0....0....1....2...-4...-2...-1....1...-1....0....1....2...-1...-2
.-3....4....1....3....2...-1....0....0....3....0....3...-4....0....0....1...-3
..2...-4....1....2....0....2....2...-3....1...-4....3....2....2....3....1...-3
CROSSREFS
Sequence in context: A163394 A225469 A095069 * A222057 A260285 A242499
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 09 2011
STATUS
approved