The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183912 T(n,k)=Number of nondecreasing arrangements of n+2 numbers in 0..k with each number being the sum mod (k+1) of two others 8
 2, 1, 3, 2, 4, 4, 1, 5, 10, 5, 2, 2, 17, 17, 6, 1, 8, 20, 38, 25, 7, 2, 1, 37, 66, 67, 34, 8, 1, 5, 22, 124, 148, 105, 44, 9, 2, 4, 40, 136, 309, 275, 153, 55, 10, 1, 4, 31, 207, 470, 637, 457, 212, 67, 11, 2, 1, 47, 231, 778, 1193, 1163, 705, 283, 80, 12, 1, 10, 18, 294, 1093, 2199 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Table starts ..2..1...2....1....2.....1.....2.....1......2......1......2.......1......2 ..3..4...5....2....8.....1.....5.....4......4......1.....10.......1......3 ..4.10..17...20...37....22....40....31.....47.....18.....63......19.....55 ..5.17..38...66..124...136...207...231....294....216....414.....217....430 ..6.25..67..148..309...470...778..1093...1504...1636...2521....2217...3249 ..7.34.105..275..637..1193..2199..3631...5596...7613..11744...13590..19258 ..8.44.153..457.1163..2525..5126..9576..16366..25833..42161...57825..85989 ..9.55.212..705.1953..4752.10501.21660..40449..71306.124219..192247.304552 .10.67.283.1031.3085..8238.19630.43980..88692.170734.316708..538177.907230 .11.80.367.1448.4650.13438.34274.82453.177974.368699.724961.1329686 Each column is eventually equal to a polynomial in n (see link). - Robert Israel, Apr 05 2018 LINKS R. H. Hardin, Table of n, a(n) for n = 1..238 Robert Israel, Proof of comment EXAMPLE All solutions for n=3, k=2 ..1....0....0....0....0....0....1....0....0....0 ..1....1....0....0....0....1....1....0....0....1 ..2....2....1....0....0....1....1....1....0....1 ..2....2....1....0....2....1....2....2....1....2 ..2....2....2....0....2....2....2....2....1....2 MAPLE k:= 3: N:= 20: # to produce T(n, k) for n=2..N q:= proc(S, x) local L, m, i; m:= nops(S); L:= convert(x+3^m, base, 3)[1..m]; [seq([S[i], L[i]+1], i=1..m)]; end proc: enlarge:= proc(S) local m, j; seq(q(S, j), j=0..3^nops(S)-1) end proc: States:= map(enlarge, combinat:-powerset([\$0..k])): ns:= nops(States): T:= Matrix(ns, ns): for j from 1 to ns do S:= States[j]; if nops(S)=1 and S[1][2]=1 then T[1, j]:= 1 fi od: for i from 2 to ns do S:= States[i]; P:= S[-1]; Sp:= subs(P=[P[1], min(3, P[2]+1)], S); member(Sp, States, 'j'); T[i, j]:= 1; for sp from P[1]+1 to k do Sp:= [op(S), [sp, 1]]; member(Sp, States, 'j'); T[i, j]:= 1 od od: v:= Vector[row]([1, 0\$(ns-1)]): good:= proc(s) local L: L:= map(p -> p[1]\$p[2], States[s]); andmap(j -> member(L[j], [seq(seq(L[i]+L[ip] mod (k+1), ip = {\$i+1..nops(L)} minus {j}), i=[\$1..j-1, \$(j+1)..nops(L)])]), [\$1..nops(L)]) end proc: goodS:= select(good, [\$1..ns]): vT[0]:= v: for i from 1 to N+2 do vT[i]:= vT[i-1] . T od: seq(convert(vT[i][goodS], `+`), i=3..N+2); # Robert Israel, Apr 05 2018 CROSSREFS Sequence in context: A352833 A034390 A368671 * A144693 A328399 A328171 Adjacent sequences: A183909 A183910 A183911 * A183913 A183914 A183915 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Jan 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 12:29 EDT 2024. Contains 372788 sequences. (Running on oeis4.)