login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183861
a(1) = 1; for n > 1, a(n) = n - 1 + ceiling((n^2 - 1)/3); complement of A183860.
1
1, 2, 5, 8, 12, 17, 22, 28, 35, 42, 50, 59, 68, 78, 89, 100, 112, 125, 138, 152, 167, 182, 198, 215, 232, 250, 269, 288, 308, 329, 350, 372, 395, 418, 442, 467, 492, 518, 545, 572, 600, 629, 658, 688, 719, 750, 782, 815, 848, 882, 917, 952, 988, 1025, 1062, 1100, 1139, 1178, 1218, 1259, 1300, 1342, 1385, 1428, 1472, 1517, 1562, 1608, 1655, 1702
OFFSET
1,2
FORMULA
a(n) = n - 1 + ceiling((n^2 - 1)/3).
a(n) = floor((2*n^2 + 6*n - 5)/6) for n > 1. - Sela Fried, Jul 12 2022
G.f.: x*(1 + 2*x^2 - x^3 + x^4 - x^5)/((1 - x)^3*(1 + x + x^2)). - Stefano Spezia, Jul 12 2022
MATHEMATICA
a=3; b=1;
Table[n+Floor[(a*n+b)^(1/2)], {n, 90}]
Table[n-1+Ceiling[(n*n-b)/a], {n, 70}]
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 2, 5, 8, 12, 17}, 70] (* Harvey P. Dale, Jul 01 2015 *)
PROG
(PARI) a(n) = if (n==1, 1, n - 1 + ceil((n^2 - 1)/3)); \\ Michel Marcus, Jul 13 2022
(PARI) a(n)=if(n==1, 1, n^2\3+n-1) \\ Charles R Greathouse IV, Jul 13 2022
CROSSREFS
Cf. A183860.
Sequence in context: A241566 A002960 A022942 * A024534 A011974 A372231
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 07 2011
EXTENSIONS
Name corrected by Michel Marcus, Jul 13 2022
STATUS
approved