login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183058
Cyclops Sophie-Germain primes.
2
509, 809, 12011, 12041, 13049, 14081, 16091, 18041, 21011, 21089, 22013, 22079, 23099, 25073, 28019, 29021, 29033, 31019, 33023, 33053, 35069, 35081, 35099, 36083, 37013, 37049, 38039, 39089, 41081, 42023, 42071, 42089, 43013
OFFSET
1,1
COMMENTS
Sophie Germain primes which are also Cyclops numbers.
LINKS
FORMULA
A005384 INTERSECT A134808.
EXAMPLE
509 is in the sequence because 509 is a Sophie Germain prime A005384 and it is also a Cyclops number A134808.
MAPLE
isA005384 := proc(n) isprime(n) and isprime(2*n+1) ; end proc:
isA134808 := proc(n) local dgs, ndgs; dgs := convert(n, base, 10) ; mdg := (nops(dgs)+1)/2 ; if type(nops(dgs), 'even') then false; elif n = 0 then true; else if op(mdg, dgs) <> 0 then false; else if mul(op(k, dgs), k=1..mdg-1) =0 or mul(op(k, dgs), k=mdg+1..nops(dgs)) = 0 then false; else true; end if; end if; end if; end proc:
isA183058 := proc(n) isA005384(n) and isA134808(n) ; end proc:
for n from 0 to 50000 do if isA183058(n) then printf("%d, ", n); end if; end do: # R. J. Mathar, Jan 05 2011
MATHEMATICA
csgpQ[n_]:=Module[{idn=IntegerDigits[n], len}, len=Length[idn]; PrimeQ[2n+1]&&OddQ[len]&&idn[[(len+1)/2]]==0&&Count[idn, 0]==1]; Select[Prime[ Range[ 4500]], csgpQ] (* Harvey P. Dale, Jun 06 2020 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Omar E. Pol, Dec 26 2010
STATUS
approved