login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A182676
a(n) is the largest n-digit number with exactly 8 divisors, a(n) = 0 if no such number exists.
2
0, 88, 999, 9994, 99995, 999994, 9999994, 99999994, 999999998, 9999999995, 99999999998, 999999999998, 9999999999998, 99999999999998, 999999999999995, 9999999999999998, 99999999999999998, 999999999999999987, 9999999999999999995, 99999999999999999985, 999999999999999999995
OFFSET
1,2
COMMENTS
a(n) is the largest n-digit number of the form p^7, p^3*q or p*q*r (p, q, r = distinct primes), a(n) = 0 if no such number exists.
LINKS
FORMULA
a(n) = max {10^(n-1) <= k < 10^n : A000005(k)=8} if set is nonempty, else a(n) = 0.
MAPLE
with(numtheory):
a:= proc(n) local k;
if n<2 then 0
else for k from 10^n-1 while tau(k)<>8 by -1
do od; k
fi
end:
seq(a(n), n=1..20);
PROG
(PARI) a(n)=forstep(k=10^n-1, 10^(n-1), -1, numdiv(k)==8 & return(k)) \\ M. F. Hasler, Nov 27 2010
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Nov 27 2010
EXTENSIONS
Edited by Alois P. Heinz, Nov 27 2010
Given terms double-checked with given PARI code by M. F. Hasler, Nov 27 2010
a(20)-a(21) from Amiram Eldar, Apr 09 2024
STATUS
approved