OFFSET
1,1
COMMENTS
The product of any 2 terms a(i)*a(j) is not a member of the sequence.
tau(n) is congruent to 2 modulo 4 iff only one prime in the prime factorization of n has exponent of the form 4*m + 1, and no prime in the prime factorization of n has exponent of the form 4*k + 3.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
Terms are of the form p * m^2 * n^4 for any prime p, m coprime to p, and n. - Charles R Greathouse IV, Apr 26 2012
EXAMPLE
The divisors of 12 are: 1, 2, 3, 4, 6, 12 [6 divisors]. 6 is congruent to 2 modulo 4. Thus 12 is a member of this sequence.
MATHEMATICA
Select[Range[200], Mod[DivisorSigma[0, #], 4]==2&] (* Harvey P. Dale, Sep 07 2020 *)
PROG
(PARI) {plnt=1 ; for(k=1, 10^7,
if(numdiv(k) % 4 == 2, print1(k, ", "); plnt++ ; if(100 < plnt, break() )))}
(PARI) is(n)=my(p=core(n)); isprime(p)&&valuation(n, p)%4==1 \\ Charles R Greathouse IV, Apr 26 2012
(PARI) list(lim)=my(v=List(), t); forprime(p=2, lim, for(m=1, sqrtint(lim\p), if(m%p==0, next); t=p*m^2; for(n=1, sqrtint(sqrtint(lim\t)), listput(v, t*n^4)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Apr 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Douglas Latimer, Apr 26 2012
STATUS
approved