login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182292
Smallest odd number k such that is equal to the sum of its proper divisors greater than k^(1/n), or 0 if none exist.
0
34155, 407715, 8415
OFFSET
2,1
COMMENTS
a(8) = 159030135. There is no n > 4 for which a(n) is smaller unless a(n) = 0. - Charles R Greathouse IV, Apr 25 2012
Other than a(2) to a(4) and a(8), there is no solution < 2*10^10 for a(n) up to a(1000). - Donovan Johnson, Aug 23 2012
From Alexander Violette, Feb 29 2024: (Start)
a(7) <= 7650499534755.
a(14) <= 221753170660847595. (End)
EXAMPLE
The sum proper divisors of 407715 greater than 407715^(1/3) is 77 + 105 + 165 + 231 + 353 + 385 + 1059 + 1155 + 1765 + 2471 + 3883 + 5295 + 7413 + 11649 + 12355 + 19415 + 27181 + 37065 + 58245 + 81543 + 135905 = 407715.
MATHEMATICA
t={}; d[n_]:= Select[Drop[Divisors[n], -1], #1>n^(1/p)&]; Do[s=Select[Range[1, 5*10^5, 2], #==Plus@@d[#]&];
AppendTo[t, s], {p, 2, 4}]; Flatten[t]
PROG
(PARI) a(n)=my(t, k=8413); while(k+=2, if(sigma(k, -1)>2, if(ispower(k, n, &t), , t=k^(1/n)\1); if(sumdiv(k, d, if(d>t, d))==2*k, return(k)))) \\ Charles R Greathouse IV, Apr 25 2012
CROSSREFS
See A182147 for more details for 34155.
Sequence in context: A344666 A227699 A234820 * A206214 A227487 A204411
KEYWORD
nonn,bref
AUTHOR
Manuel Valdivia, Apr 24 2012
STATUS
approved