Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 24 2014 02:02:08
%S 1,1,6,91,2910,187178,24019884,6154080275,3151538898870,
%T 3227331249742334,6609648919647088788,27073195436180090799006,
%U 221783764770326660974008300,3633705802215756626623500731892,119069276624759801067298501607804376
%N G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x)^2.
%H Vincenzo Librandi, <a href="/A182263/b182263.txt">Table of n, a(n) for n = 0..70</a>
%F a(n) = (2^n-1) * { [x^(n-1)] A(x)^2 } for n>0 with a(0)=1.
%F a(n) = (2^n-1) * Sum_{k=0..n-1} a(k)*a(n-k-1) for n>0 with a(0)=1.
%F a(n) ~ c * 2^((n-1)*(n+4)/2), where c = 0.71662215139236633556752111264619992099204134882... - _Vaclav Kotesovec_, Feb 22 2014
%e G.f.: A(x) = 1 + x + 6*x^2 + 91*x^3 + 2910*x^4 + 187178*x^5 + 24019884*x^6 +...
%e Related expansions:
%e A(x)^2 = 1 + 2*x + 13*x^2 + 194*x^3 + 6038*x^4 + 381268*x^5 + 48457325*x^6 + 12358976074*x^7 + 6315716731394*x^8 + 6461044887240556*x^9 +...
%e such that a(n) = (2^n-1) times the coefficient of x^(n-1) in A(x)^2:
%e a(2) = 3 * 2 = 6;
%e a(3) = 7 * 13 = 91;
%e a(4) = 15 * 194 = 2910;
%e a(5) = 31 * 6038 = 187178;
%e a(6) = 63 * 381268 = 24019884; ...
%t a = ConstantArray[0,21]; a[[1]]=1; a[[2]]=1; Do[a[[n+1]] = (2^n-1)* Sum[a[[k+1]]*a[[n-k]],{k,0,n-1}],{n,2,20}]; a (* _Vaclav Kotesovec_, Feb 22 2014 *)
%o (PARI) /* Generating Function Satisfies: */
%o {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} /* = n-th derivative of F */
%o {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+sum(k=1, n, x^k/k!*Dx(k, x*A^2+x*O(x^n) ))); polcoeff(A, n)}
%o (PARI) /* Recurrence: */
%o {a(n)=if(n==0,1,(2^n-1)*sum(k=0,n-1,a(k)*a(n-k-1)))}
%o for(n=0,15,print1(a(n),", "))
%o (PARI) /* Recurrence: */
%o {a(n)=local(A=1+sum(k=1,n-1,a(k)*x^k)+x*O(x^n));if(n==0,1,(2^n-1)*polcoeff(A^2,n-1))}
%Y Cf. A005329, A182264.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Apr 21 2012