login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182193
Sequence of row differences related to table A182355.
2
-1, 1, 19, 125, 743, 4345, 25339, 147701, 860879, 5017585, 29244643, 170450285, 993457079, 5790292201, 33748296139, 196699484645, 1146448611743, 6681992185825, 38945504503219, 226991034833501, 1323000704497799, 7711013192153305, 44943078448422043
OFFSET
0,3
COMMENTS
Sequence of row differences in table A182355. If A182355(k + 1, 0) - A182355(k, 0) = -1, a(n) = A182355(k + 1, n) - A182355(k, n).
If p is a prime of the form 8r = +/- 3, a(p) = 5 mod p; if p is a prime of the form 8r = +/- 1, a(p) = 1 mod p.
FORMULA
a(n) = 6*a(n-1) - a(n-2) + 12.
a(0)=-1, a(1)=1, a(2)=19, a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Harvey P. Dale, Feb 09 2014
From Colin Barker, Mar 05 2016: (Start)
a(n) = -3 + (1/4)*( (4-sqrt(2))*(3+2*sqrt(2))^n + (4+sqrt(2))*(3-2*sqrt(2))^n ).
G.f.: -(1-8*x-5*x^2) / ((1-x)*(1-6*x+x^2)).
(End)
a(n) = A002203(2*n) - A000129(2*n) - 3. - G. C. Greubel, May 24 2021
MAPLE
Pell:= proc(n) option remember;
if n<2 then n
else 2*Pell(n-1) + Pell(n-2)
fi; end:
seq(Pell(2*n) + 2*Pell(2*n-1) - 3, n=0..40); # G. C. Greubel, May 24 2021
MATHEMATICA
LinearRecurrence[{7, -7, 1}, {-1, 1, 19}, 30] (* Harvey P. Dale, Feb 09 2014 *)
PROG
(Magma) I:=[-1, 1]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)+12: n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
(PARI) Vec(-(1-8*x-5*x^2)/((1-x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 05 2016
(Sage) [lucas_number2(2*n, 2, -1) - lucas_number1(2*n, 2, -1) - 3 for n in (0..40)] # G. C. Greubel, May 24 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Kenneth J Ramsey, Apr 17 2012
EXTENSIONS
More terms from Harvey P. Dale, Feb 09 2014
STATUS
approved