login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181864 a(1) = 1, a(2) = 2. For n >= 3, a(n) is found by concatenating the squares of the first n-1 terms of the sequence and then dividing the resulting number by a(n-1). 10
1, 2, 7, 207, 700207, 207000000700207, 70020700000000000000207000000700207, 2070000007002070000000000000000000000000000000000070020700000000000000207000000700207 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The calculations for the first few values of the sequence are

... 2^2 = 4 so a(3) = 14/2 = 7

... 7^2 = 49 so a(4) = 1449/7 = 207

... 207^2 = 42849 so a(5) = 144942849/207 = 700207.

For similarly defined sequences see A181754 through A181756 and A181865 through

A181870.

LINKS

Table of n, a(n) for n=1..8.

FORMULA

DEFINITION

a(1) = 1, a(2) = 2, and for n >= 3

(1)... a(n) = concatenate(a(1)^2,a(2)^2,...,a(n-1)^2)/a(n-1).

RECURRENCE RELATION

For n >= 2

(2)...a(n+2) = a(n+1) + 10^F(n,2)*a(n) = a(n+1) + 10^Pell(n)*a(n),

where F(n,2) is the Fibonacci polynomial F(n,x) evaluated at x = 2

and where Pell(n) = A000129(n).

RELATION WITH OTHER SEQUENCES

a(n) has A113225(n-2) digits.

a(n)^2 has Pell(n-1) digits.

MAPLE

#A181864

M:=8: a:=array(1..M):s:=array(1..M):

a[1]:=1:a[2]:=2:

s[1]:=convert(a[1]^2, string):

s[2]:=cat(s[1], convert(a[2]^2, string)):

for n from 3 to M do

a[n] := parse(s[n-1])/a[n-1];

s[n]:= cat(s[n-1], convert(a[n]^2, string));

end do:

seq(a[n], n = 1..M);

CROSSREFS

A000129, A113225, A181754, A181755, A181756, A181865, A181866,A181867, A181868, A181869, A181870

Sequence in context: A247028 A333740 A306951 * A096463 A048560 A261267

Adjacent sequences:  A181861 A181862 A181863 * A181865 A181866 A181867

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Nov 28 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 04:54 EDT 2020. Contains 337295 sequences. (Running on oeis4.)