|
|
A181623
|
|
Sequence starting with 1 such that the sum of any two distinct elements has four distinct prime factors.
|
|
0
|
|
|
1, 209, 1121, 2989, 11381, 34889, 47701, 62453, 188785, 878185, 1761737, 3931385, 5630905, 7990481, 32892077, 204570037, 253223785, 1353794333, 2877954833
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Choose the first number not leading to a contradiction.
|
|
LINKS
|
Table of n, a(n) for n=1..19.
|
|
EXAMPLE
|
Each of the three pairwise sums of the subset {1, 209, 1121} is the product of four distinct prime factors: {2*3*5*7, 2*3*11*17, 2*3*5*137}.
|
|
MAPLE
|
with(numtheory):nn:=100000:T:=array(1..nn): U:=array(1..nn): for p from 1 to
nn do: T[p]:=p:U[p]:=1:od:for u from 1 to 30 do: k:=1+u:for n from u+1 to nn
do:s:=T[n]+T[u]:s1:=nops(factorset(s)):s2:=bigomega(s):if s1=4 and s2=4 then
U[k]:=T[n]:k:=k+1:else fi:od:for i from 1 to nn do:T[i]:=U[i]:od:od:for j from
1 to 30 do:printf(`%d, `, T[j]):od:
|
|
CROSSREFS
|
Cf. A180514, A180565, A180615, A181620, A181622.
Sequence in context: A203048 A203041 A293981 * A104874 A157441 A304063
Adjacent sequences: A181620 A181621 A181622 * A181624 A181625 A181626
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Lagneau, Jan 31 2011
|
|
EXTENSIONS
|
a(9)-a(19) from Donovan Johnson, Feb 14 2011
|
|
STATUS
|
approved
|
|
|
|