Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jan 21 2024 03:42:12
%S 1,2,6,18
%N Numbers k such that 3*2^k-1 and 3*2^k+1 are twin primes (A001097).
%C Sequences A181491 and A181492 list the corresponding primes.
%C No more terms below three million. - _Charles R Greathouse IV_, Mar 14 2011
%C Intersection of A002235 and A002253. - _Jeppe Stig Nielsen_, Mar 05 2018
%F Equals { k | A007283(k) in A014574 } = { k | A153893(k) in A001359 }.
%p a:=k->`if`(isprime(3*2^k-1) and isprime(3*2^k+1),k,NULL); seq(a(k),k=1..1000); # _Muniru A Asiru_, Mar 11 2018
%t fQ[n_] := PrimeQ[3*2^n - 1] && PrimeQ[3*2^n + 1]; k = 1; lst= {}; While[k < 15001, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ] (* _Robert G. Wilson v_, Nov 05 2010 *)
%t Select[Range[20],AllTrue[3*2^#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Sep 24 2014 *)
%o (PARI) for( k=1,999, ispseudoprime(3<<k-1)||next; ispseudoprime(3<<k+1)&print(k))
%o (GAP) Filtered([1..300],k->IsPrime(3*2^k-1) and IsPrime(3*2^k+1)); # _Muniru A Asiru_, Mar 11 2018
%Y Cf. A001097, A001359, A002235, A002253, A006512, A014574, A294730.
%K bref,hard,more,nonn
%O 1,2
%A _M. F. Hasler_, Oct 30 2010
%E Pari program repaired by _Charles R Greathouse IV_, Mar 14 2011