login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n)= the smallest number such that a(n)^2+1=p*A002144(n), p prime.
0

%I #5 Mar 30 2012 18:35:54

%S 3,5,30,12,80,9,30,11,46,34,22,414,76,15,100,44,28,80,19,274,380,794,

%T 144,64,530,456,60,334,724,25,114,526,136,42,104,274,334,1584,266,29,

%U 254,516,566,48,810,286,52,2110,86,1130,516,726,35,194,154,504,106,58,4036,566,96,380

%N a(n)= the smallest number such that a(n)^2+1=p*A002144(n), p prime.

%e a(1) = 3 because 3^2+1 = 2*A002144(1) = 2*5 ;

%e a(2) = 5 because 5^2+1 = 2*A002144(2) = 2*13 ;

%e a(3) = 30 because 30^2+1 = 53*A002144(3) = 53*17;

%e a(4) = 12 because 12^2+1 = 5*A002144(4) = 5*29.

%p with(numtheory):nn:=10000:T:=array(1..10000):k:=2:T[1]:=2:for x from 1 to nn

%p do: p:=4*x+1:if type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:for n from

%p 2 to 100 do: id:=0:for p from 1 to k while(id=0) do:x:=T[n]*T[p]-1:y:=sqrt(x):if

%p y=floor(y)then id:=1:printf(`%d, `,y):else fi:od:od:

%Y Cf. A002144.

%K nonn

%O 1,1

%A _Michel Lagneau_, Jan 29 2011