login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181429
a(n)= the smallest number such that a(n)^2+1=p*A002144(n), p prime.
0
3, 5, 30, 12, 80, 9, 30, 11, 46, 34, 22, 414, 76, 15, 100, 44, 28, 80, 19, 274, 380, 794, 144, 64, 530, 456, 60, 334, 724, 25, 114, 526, 136, 42, 104, 274, 334, 1584, 266, 29, 254, 516, 566, 48, 810, 286, 52, 2110, 86, 1130, 516, 726, 35, 194, 154, 504, 106, 58, 4036, 566, 96, 380
OFFSET
1,1
EXAMPLE
a(1) = 3 because 3^2+1 = 2*A002144(1) = 2*5 ;
a(2) = 5 because 5^2+1 = 2*A002144(2) = 2*13 ;
a(3) = 30 because 30^2+1 = 53*A002144(3) = 53*17;
a(4) = 12 because 12^2+1 = 5*A002144(4) = 5*29.
MAPLE
with(numtheory):nn:=10000:T:=array(1..10000):k:=2:T[1]:=2:for x from 1 to nn
do: p:=4*x+1:if type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:for n from
2 to 100 do: id:=0:for p from 1 to k while(id=0) do:x:=T[n]*T[p]-1:y:=sqrt(x):if
y=floor(y)then id:=1:printf(`%d, `, y):else fi:od:od:
CROSSREFS
Cf. A002144.
Sequence in context: A215780 A214655 A341037 * A162262 A151373 A189739
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 29 2011
STATUS
approved