login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181316
G.f.: A(x) = exp( Sum_{n>=1} 2*((3^n-1)/2)^(n-1)*x^n/n ).
0
1, 2, 6, 122, 32242, 85808250, 2130201408474, 487143290951349930, 1021074261736069185881850, 19547957495950654924427730234138, 3408841202663503254998708590894515413082
OFFSET
0,2
COMMENTS
Conjecture: exp( Sum_{n>=1} (q-1)*((q^n-1)/(q-1))^(n-1)*x^n/n ) is an integer series for all integer q>1.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 122*x^3 + 32242*x^4 +...
log(A(x)) = 2*x + 2*4^1*x^2/2 + 2*13^2*x^3/3 + 2*40^3*x^4/4 + 2*121^4*x^5/5 + 2*364^5*x^6/6 +...+ 2*A003462(n)^(n-1)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, 2*((3^m-1)/2)^(m-1)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A180606.
Sequence in context: A039716 A164955 A060001 * A101753 A288185 A359961
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 31 2010
STATUS
approved