OFFSET
1,4
COMMENTS
a(n) = ADPE(n) is the total number of aperiodic k-double-palindromes of n up to cyclic equivalence. See sequence A181169 for the definitions of an aperiodic k-double-palindrome of n and of cyclic equivalence.
Sequence A181169 is the 'ADPE(n,k)' triangle read by rows where ADPE(n,k) is the number of aperiodic k-double-palindromes of n up to cyclic equivalence.
For example, we have a(6) = ADPE(6) = ADPE(6,1) + ADPE(6,2) + ADPE(6,3) + ADPE(6,4) + ADPE(6,5) + ADPE(6,6) = 0 + 2 + 1 + 2 + 1 + 0 = 6. The 6 aperiodic double-palindromes of 6 up to cyclic equivalence are: 15, 24, 114, 1113, 1122, 11112. They are the representatives of the cyclic equivalence classes: {15,51}, {24,42}, {114,411,141},{1113,3111,1311,1131}, {1122,2112,2211,1221} and {11112,21111,12111,11211,11121}.
Hence a(n) = ADPE(n) is the total number of cyclic equivalence classes of compositions of n containing at least one aperiodic double-palindrome of n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
FORMULA
From Andrew Howroyd, Sep 28 2019: (Start)
a(n) = A056493(n) - 1 for n > 1.
G.f.: (x^2-2*x)/(1-x) + Sum_{k=1..n} mu(k)*x^k*(2 + 3*x^k)/(1 - 2*x^(2*k)).
(End)
PROG
(PARI) a(n)={sumdiv(n, d, moebius(n/d)*((3 + d%2)*2^(d\2-1) - 1)) - 1} \\ Andrew Howroyd, Sep 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John P. McSorley, Oct 12 2010
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Sep 27 2019
STATUS
approved