

A181045


Decimal expansion of A060295/24.


3



1, 0, 9, 3, 9, 0, 5, 8, 8, 6, 0, 0, 3, 2, 0, 3, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 8, 7, 5, 3, 0, 2, 4, 8, 8, 3, 2, 5, 7, 7, 3, 7, 0, 3, 6, 6, 3, 9, 7, 4, 4, 0, 1, 4, 0, 5, 5, 7, 0, 7, 9, 5, 2, 6, 1, 2, 8, 1, 4, 0, 5, 8, 7, 6, 5, 7, 5, 8, 7, 7, 6, 9, 9, 6, 2, 5, 4, 9, 4, 1, 9, 7, 1, 3, 7, 2, 9, 6, 5, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

17,3


COMMENTS

This real number is close to the prime number 10939058860032031. Also,the only (single) integer values placed in the denominator that will generate 'near integers'from this relation are the divisors of 24 [1 2 3 4 6 8 12 24] Cf. A018253. A total number of 64 'near integers' can be obtained from generating powers (18) of A060295 and dividing each by one of the divisors of 24. Example: The last (64th) 'near integer' is A060295^8 = 2.25698985492608864738884...99926422461218840012234... *10^139 (which is split by ... for brevity)and the decimal is placed 218840.012234. While this does not quite look like a 'near integer' this is where the pattern of 0's and 9's in the decimal tail cease in the case. See A166532.


LINKS

G. C. Greubel, Table of n, a(n) for n = 17..10000
Math Overflow, Questions [From Mark A. Thomas, Oct 02 2010]
M. A. Thomas, Math Ontological Basis of Quasi FineTuning in Ghc Cosmologies, HAL preprint Id: hal01232022, 2015.


FORMULA

Equals exp(Pi * sqrt(163))/24.


EXAMPLE

A060295/24 = 10939058860032030.999999999999968753024883257737036639... This is almost the prime 10939058860032031.


MATHEMATICA

E^(Pi Sqrt[163])/24
RealDigits[Exp[Pi Sqrt[163]]/24, 10, 100][[1]] (* G. C. Greubel, Feb 14 2018 *)


PROG

(PARI) exp(Pi*sqrt(163))/24 \\ G. C. Greubel, Feb 14 2018
(MAGMA) R:= RealField(); Exp(Pi*Sqrt(163))/24;


CROSSREFS

Cf. A166528, A166529, A166530, A166531.
Sequence in context: A284832 A266559 A111971 * A242815 A155166 A159467
Adjacent sequences: A181042 A181043 A181044 * A181046 A181047 A181048


KEYWORD

cons,nonn


AUTHOR

Mark A. Thomas, Sep 30 2010


STATUS

approved



