login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181044
The number of ways to compute the determinant of an n X n matrix using cofactor expansion.
2
1, 4, 384, 173946175488, 1592481597212922365761871004823571903636713118111555911680
OFFSET
1,2
REFERENCES
Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 6.1.9 at p. 153.
LINKS
Robert A. Beeler, A Note on the number of ways to compute a determinant using cofactor expansion, Bull. Inst. Combin. Appl., 63 (2011), 36-38. [ResearchGate link]
FORMULA
a(n) = 2*n*(a(n-1))^n.
a(n) = 2*2^n*2^(n*(n-1))*2^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3)*n*(n-1)^n*(n-2)^(n*(n-1))*(n-3)^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3).
From Robert A. Beeler, Oct 11 2010: (Start)
4^(n!*(e-2)) < a(n) < (2*e)^(n!*(e-2)).
a(n) ~ A363767^n!. (End)
MATHEMATICA
a[1]=1; a[n_]:=2n a[n-1]^n; Array[a, 5] (* Stefano Spezia, Jun 20 2023 *)
PROG
(PARI) a(n) = if (n==1, 1, 2*n*a(n-1)^n); \\ Michel Marcus, Jun 21 2023
CROSSREFS
Cf. A363767.
Sequence in context: A003753 A193130 A006237 * A339449 A116031 A115049
KEYWORD
nonn
AUTHOR
Robert A. Beeler, Sep 30 2010
STATUS
approved