OFFSET
1,2
REFERENCES
Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 6.1.9 at p. 153.
LINKS
Stefano Spezia, Table of n, a(n) for n = 1..6
Robert A. Beeler, A Note on the number of ways to compute a determinant using cofactor expansion, Bull. Inst. Combin. Appl., 63 (2011), 36-38. [ResearchGate link]
FORMULA
a(n) = 2*n*(a(n-1))^n.
a(n) = 2*2^n*2^(n*(n-1))*2^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3)*n*(n-1)^n*(n-2)^(n*(n-1))*(n-3)^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3).
From Robert A. Beeler, Oct 11 2010: (Start)
4^(n!*(e-2)) < a(n) < (2*e)^(n!*(e-2)).
a(n) ~ A363767^n!. (End)
MATHEMATICA
a[1]=1; a[n_]:=2n a[n-1]^n; Array[a, 5] (* Stefano Spezia, Jun 20 2023 *)
PROG
(PARI) a(n) = if (n==1, 1, 2*n*a(n-1)^n); \\ Michel Marcus, Jun 21 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert A. Beeler, Sep 30 2010
STATUS
approved