%I #8 Aug 08 2013 05:15:04
%S 1,4,247,2947,67015,885946,17161239,244111975,4394140309
%N The number of walks (sequences starting with 0 and changing by plus or minus 1 at each step) of length 4n such that every window therein of width 2n has its left half summing to strictly less than its right half.
%C For n odd, one in about 7.82 of all walks have this property, while for n even it fluctuates more initially but converges to the same limit as n odd. This small constant ratio demonstrates the weakness of this test for proving with confidence better than 87.2% that an ostensibly increasing sequence is not just a purely random walk.
%o (C) .#include <math.h>
%o .#include <unistd.h>
%o .#include <stdlib.h>
%o .#include <stdio.h>
%o .
%o .#define MAX 10
%o .
%o .int n, w[4*MAX+1];
%o .
%o .double
%o .f(int i, int wk, int lh, int rh)
%o .{
%o . w[i] = wk;
%o . return
%o . i < n? f(i+1, wk-1, lh+wk, 0) + f(i+1, wk+1, lh+wk, 0): // init lh
%o . i < 2*n? f(i+1, wk-1, lh, rh+wk) + f(i+1, wk+1, lh, rh+wk): // init rh
%o . i < 4*n? (lh >= rh? 0:
%o . f(i+1, wk-1, lh+w[i-n]-w[i-2*n], rh+wk-w[i-n]) + // walk
%o . f(i+1, wk+1, lh+w[i-n]-w[i-2*n], rh+wk-w[i-n])):
%o . lh < rh; // stop
%o .}
%o .
%o .int
%o .main()
%o .{
%o . for (n = 1; n <= MAX; n++)
%o . printf("%2d %0.f\n", n, f(0, 0, 0, 0)/2);
%o . return 0;
%o .}
%K hard,more,nonn,walk
%O 1,2
%A Vaughan Pratt (pratt(AT)cs.stanford.edu), Sep 18 2010