login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A180328
Semiprimes pq such that there is another semiprime rs with (p+1)(q+1)=(r+1)(s+1) and p, q, r, and s distinct primes.
3
14, 15, 33, 35, 46, 51, 55, 62, 69, 77, 87, 94, 95, 115, 118, 119, 123, 141, 142, 143, 145, 155, 158, 159, 161, 166, 177, 187, 203, 205, 209, 213, 214, 221, 235, 249, 253, 254, 265, 267, 278, 287, 295, 299, 302, 303, 319, 321, 323, 329, 334, 335, 339, 341, 355
OFFSET
1,1
COMMENTS
Note that for a semiprime p*q, the expression (p+1)*(q+1) is the sum of the divisors (A000203) of p*q. - Michel Marcus, Jan 29 2015
Subsequence of A162283. - Gionata Neri, Nov 20 2015
EXAMPLE
For pq = 14 = 2*7, the corresponding rs is 15 because (2+1)(7+1) = 24 = (3+1)(5+1).
MATHEMATICA
nn=1000; sp=Select[Range[2, 3*nn/2], Last/@FactorInteger[ # ]=={1, 1}&]; prods=Table[Times@@(1+First/@FactorInteger[n]), {n, sp}]; dups=Select[Tally[prods], #[[2]]>1&]; goodProds=Sort[Transpose[dups][[1]]]; pos=Select[Range[Length[sp]], sp[[ # ]]<=nn && MemberQ[goodProds, prods[[ # ]]]&]; sp[[pos]]
CROSSREFS
Cf. A000203, A180329 (odd semiprimes with this property).
Sequence in context: A216680 A332736 A162283 * A211144 A213386 A370403
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 07 2010
STATUS
approved