login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180162
a(n) is the smallest number N such that sigma(N) is an n-th power but not a higher power, with a(n) = 0 if no such number exists.
5
1, 2, 3, 7, 510, 21, 17490, 93, 217, 381, 651, 118879530, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429
OFFSET
0,2
LINKS
FORMULA
a(n) >= A063869(n). - R. J. Mathar, Aug 20 2010
EXAMPLE
a(4)=510 since 510=2*3*5*17, sigma(510)=2^4*3^4.
a(11)=2*3*5*7*11*53*971=118879530 since sigma(118879530)=6^11.
MAPLE
with(numtheory);
egcd:=proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z-> z[2], L); igcd(op(L)) else 0 fi end:
P:={}: SP:={}:
for w to 1 do
for n from 1 to 12^6 do
sn:=sigma(n);
esn:=egcd(sn);
if not esn in P then
P:=P union {esn};
SP:=SP union {[esn, n]};
printf("n=%d, esn=%d, sn=...\n", n, esn);
print(ifactor(sn));
fi;
od; #n
od; #w
P; SP;
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Kehowski, Aug 14 2010, Aug 19 2010
EXTENSIONS
a(11) found by Walter Kehowski and Artur Jasinski, Aug 16 2010
Edited by N. J. A. Sloane, Aug 19 2010
a(23) onwards from Ray Chandler, Aug 19 2010
STATUS
approved